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Progress Summary:  

Task 1: Characterize spatial patterns of conservation practice (CP; best management practices 

or BMPs in previous reports) implementation and predicted sediment and nutrient loading in the 

upper Clinch, Powell, and Holston watersheds (CPH).  

 

We obtained CP data from the Natural Resources Conservation Service (NRCS) and the Virginia 

Department of Conservation and Recreation (VDCR) for the CPH in southwest Virginia. We 

also collated data needed to run the Soil and Water Assessment Tool (SWAT) including 

topography, stream network, land use, soil, climate, streamflow, and water quality. We then 

calibrated the SWAT+ model for estimated streamflow (m3/sec), sediment loads (metric tons), 

nitrogen loads (kg), and phosphorus loads (kg) from 2004–2009 for daily (per d) and monthly 

(per m) time steps. To calibrate the model, we compared sediment and nutrient loads predicted 

by the SWAT+ model to values measured in streams within our study area and adjusted model 

parameters (e.g., the erodibility of the soil) until the predicted values were similar to measured 

values as indicated by Nash-Sutcliffe efficiency values >0.5. Adjusting channel width and depth 

according to a regional model led to the greatest improvements in the SWAT+ model’s ability to 

predict streamflow. Further, increasing the movement rate of water through the soil (i.e., soil 

hydraulic conductivity) and decreasing the amount of water the soil can hold (i.e., soil-available 

water capacity) improved model performance for streamflow. We found that reducing channel 

erodibility from the default of 0.01 to 0.00002 cm3/N-s (i.e., making the bed and bank material of 

the stream channel less prone to erosion) led to the greatest improvements in estimating sediment 

loads. Finally, we were unable to determine any parameters that improved predictions for 

nitrogen and phosphorus loads. After calibration, we assessed the SWAT+ model’s ability to 

predict sediment and nutrient loads from 2010–2021. We found that SWAT+ predicted 

streamflow well, had mixed success predicting sediment loads, overpredicted nitrogen loads, and 

did not predict phosphorus loads well.  

 

Task 2: Analyze the influences of CPs, relative to other watershed features, on predicted 

sediment and nutrient loads in HUC12s across the upper CPH, excluding those encompassing 

mainstem rivers and those in the Cumberland Plateau coalfields.  

 

We extracted landscape data and pollutant yields for each landscape unit from the SWAT+ 

model. We then used multiple linear regression models to relate landscape data to the estimated 

pollutant yields. Interestingly, greater proportions of agricultural land within landscape units 

were associated with declines in sediment (metric tons/ha/yr) and nitrogen (kg/ha/yr) yields and 

increases in phosphorus yields (kg/ha/yr) but agricultural land use was a weak predictor in all 

models. In contrast, we found that sediment and nitrogen yields were positively associated with 

increasing urban land use, but phosphorus yields were negatively associated with increasing 

urban land use, which suggests that urban lands may be a strong driver of sediment and nitrogen 

budgets within the SWAT+ model. It is well known that agricultural land use, especially cattle 

grazing, contributes to excessive sediment loads in our study area; therefore, SWAT+ is not 

capturing the key pathways through which cattle grazing is contributing sediment to streams (i.e., 

streambank erosion). We also found that soil erodibility and hydraulic conductivity influence 

sediment and nutrient yields.  
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Task 3: Quantify relations among CP implementation, observed instream water quality and 

habitat quality, and observed biotic assemblages at the spatial resolution of HUC12s or larger 

(depending on spatial distribution of existing data). 

 

We mapped CP installation intensity, sediment yield (metric tons/ha/yr), phosphorus yield 

(kg/ha/yr), and nitrogen yield (kg/ha/yr) to streams in each HUC-12 watershed of the CPH. We 

also collected macroinvertebrate and instream data from 31 sites within the Copper Creek, Laurel 

Creek, Big Moccasin Creek, and Big Cedar Creek HUC-10 watersheds (Clinch River and North 

Fork Holston River HUC-8 watersheds) from fall 2019 to spring 2022, for a total of 154 

collections. We ran mixed-effect linear regression models to determine the effects of water 

quality, instream habitat, and CPs on the proportion of macroinvertebrate individuals collected 

classified as Ephemeroptera, Plecoptera, or Trichoptera taxa (EPT). These taxa are intolerant to 

many anthropogenic impacts on streams. Surprisingly, CP density within a subbasin (number/ha) 

had a quadratic relationship with proportion of EPT individuals, with increased proportions of 

EPT individuals at low CP densities and decreased proportions of EPT individuals at high CP 

densities. To better understand the quadratic relationship, we built several models that 

represented the pathways through which CPs affect the macroinvertebrate community. First, we 

assessed the effects of CPs on water quality and habitat using simple linear, exponential decay, 

and linear plateau models. Then, we assessed effects of water quality and habitat on the 

macroinvertebrate community using Threshold Indicator Analysis. Overall, CPs tended to 

improve or stabilize water quality and instream habitat above certain implementation thresholds, 

and changes in water quality and habitat influenced the structure of the aquatic community. 

Many of the relationships we observed depended on the amount of agricultural land use within 

the watershed; therefore, sites were grouped into categories of agricultural extent and CP density, 

and relationships were explored using Analysis of Variance (ANOVA). Results from the 

ANOVA confirmed previous results and also revealed that proportion EPT individuals appeared 

to increase at sites with medium agriculture and high CP density compared to those with medium 

agriculture and low CP density. Our inability to detect direct effects of CPs on the 

macroinvertebrate community at high agriculture sites suggests that improvements in water 

quality and habitat due to CP implementation have not been large enough or occurring for a long 

enough time to produce measurable effects. 

 

Task 4: Quantify cost-effectiveness of CP implementation in HUC12s across the upper CPH, 

excluding those encompassing mainstem rivers and those in the Cumberland Plateau coalfields. 

 

We were unable to complete task 4 because the SWAT+ model was unable to simulate the 

effects of cattle grazing, precluding our ability to create realistic scenarios of CP implementation.  

 

Section 5: Management implications 

 

We combined the results from all tasks to map the landscape units where CPs are most likely to 

achieve the greatest biotic response. We overlayed maps showing the landscape units with 

greatest sediment yields, medium amounts of agricultural land use, and areas where additional 

CPs could overcome implementation thresholds. We identified 148 landscape units that would 

most benefit from additional CP installation in terms of achieving desirable biotic responses. 
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Task 1: Characterize spatial patterns of CP implementation and predicted sediment and nutrient 

loading in the upper CPH. 

1. Consult databases maintained by state and federal agencies to compile a complete database 

of all agricultural CPs (including cost, type, location, date, and dimensions) implemented in 

the upper CPH. Expected sediment and nutrient reductions by CPs also will be summarized.  

2. Compile publicly available data on other watershed features (e.g., soils, topography, land 

use, precipitation) needed to run SWAT models. SWAT models will be calibrated with 

discharge and turbidity data available from the U.S. Geological Survey (USGS).  

3. Use SWAT to estimate stream discharge and sediment and nutrient loads at daily time-steps 

for all HUC12s in the upper CPH, excluding those encompassing mainstem rivers and those 

in the Cumberland Plateau coalfields.  
 

Task 1.1:  

Caveats:  

Due to recent policy changes, the VDCR was unable to provide georeferenced CP data after 

2021. Therefore, the VDCR data were only used for site selection for task three and were 

excluded from data analyses in task three.  

 

Methods: 

We obtained CP databases from the NRCS and the VDCR, then trimmed those databases to 

retain only CPs that influence water quality. In addition to practice code and name, the VDCR 

database contained practice completion date and lifespan, and the NRCS database contained 

applied spatial extent of each practice. We determined the goal of each practice from the VDCR 

cost share manual (VDCR 2019) and the NRCS conservation practice standards (NRCS 2019a). 

We removed practices from both databases that were either not focused on agricultural 

management, or not aimed at sediment or nutrient reduction. We then determined the expected 

pollutant reductions and the implementation cost for fencing and prescribed grazing because 

these are common CPs that provide a useful contrast for the scenarios described in task 2.1 of the 

2023 report.  

 

Results:  

The NRCS database had almost ten times the number of records as the VDCR database. The 

VDCR database contained 39 unique CPs that were implemented 7,149 times. The most 

common CPs implemented by the VDCR were stream exclusion with grazing management (n = 

2,355), riparian forest buffer (n = 1,057), woodland buffer filter area (n = 1,051), small grain and 

mixed cover crop (n = 883), and harvestable cover crop (n = 571). The NRCS database contained 

92 unique CPs, which have been implemented 68,391 times. The most common CPs were 

prescribed grazing (n = 10,296), fencing (n = 9,565), watering facilities (n = 7,878), pipeline 

installation (n = 6,122), nutrient management (n = 5,073), access control (n = 4,095), forage 

harvest management (n = 2,631), and brush management (n = 2,521). Fencing with an associated 

riparian buffer is expected to reduce nitrogen, phosphorus, and sediment by 41%, 34%, and 46%, 

respectively and have a total annualized cost of $284 per acre (Chesapeake Bay Program 2020). 

Prescribed grazing is not quite as effective as fencing (nitrogen reduction = 10%, phosphorus 
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reduction = 24%, and sediment reduction = 30%) but total annualized costs are only $16 per acre 

(Chesapeake Bay Program 2020).  

 

Task 1.2:  

Methods/Results: 

We compiled topography, stream network, land use, soil, climate, streamflow, and water quality 

data to run and calibrate the SWAT+ model (Table 1.2.1). Topography data (30-m resolution) 

were obtained from the National Elevation Dataset (NED; USGS 2019a). Stream network data 

were downloaded from the National Hydrography Dataset Plus Version 2 (NHD+; U.S. 

Environmental Protection Agency [USEPA] and USGS 2012) to assist with watershed 

delineation. We downloaded both the State Soil Geographic (STATSGO) and Soil Survey 

Geographic Database (SSURGO) soil layers (NRCS 2019b). The SSURGO layer is finer 

resolution than STATSGO, which can improve model estimates for streamflow and pollutant 

loading; however, improved estimates should be weighed against computation time and project 

objectives (Wang and Melesse 2006, Bhandari et al. 2018). We used the STATSGO layer 

because SSURGO frequently caused QGIS to crash and resulted in SWAT+ run times in excess 

of two days. We obtained land-use data from the 2016 National Land Cover Database (USGS 

2019b). Climate data were obtained from the PRISM Climate Group (2020) for the centroid of 

each HUC-12 watershed. Streamflow data were obtained from each of the USGS gages in the 

upper CPH to calibrate the SWAT+ model (USGS 2020). We downloaded total nitrogen, total 

phosphorus, and total suspended solid collection data from the Virginia Department of 

Environmental Quality (VDEQ) database (VDEQ 2021). All geospatial layers were converted to 

the coordinate reference system NAD 83 UTM zone 17 and clipped to the upper CPH. These 

data will be archived on the Landscape Partnership portal. 

 

 

 

Table 1.2.1. Data sources compiled to run and calibrate the Soil and Water Assessment Tool+.  

 

 

Data Source Website Accessed 

Topography  The National Elevation Dataset  https://tinyurl.com/yce3bft7 18 June 2020 

Stream network 
National Hydrography Dataset Plus 

Version 2  
https://tinyurl.com/y4st74vh 10 January 2020 

Land use National Land Cover Database  https://www.mrlc.gov/data 25 April 2019 

Soil 
Soil Survey Geographic Database; 

State Soil Geographic Database  
https://tinyurl.com/yc4r4zdh 21 July 2020 

Climate 
Parameter-elevation regressions on 

independent slopes model  
https://prism.oregonstate.edu/ 4 August 2020 

Streamflow 
U.S. Geological Survey current water 

data for Virginia   
https://tinyurl.com/yyew8asr 4 December 2020 

Water quality 
Virginia Department of Environmental 

Quality 
https://tinyurl.com/2p86s7v2 10 December 2021 
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Task 1.3: 

Caveats: 

In contrast to the proposal text, we modeled sediment and nutrient dynamics within all HUC-12 

watersheds in the CPH and did not exclude mainstem rivers and watersheds draining the 

coalfields because it is much simpler to lump everything together in a single SWAT+ model. The 

mainstem and coalfield areas, however, were excluded when we selected sites for the biological 

surveys. 

 

We used SWAT+ to model pollutant yields rather than SWAT because SWAT+ offers several 

advantages compared to SWAT. SWAT+ was recently released to facilitate model maintenance, 

improve future code modifications, and foster collaborations among researchers (Bieger et al. 

2017). Most importantly, the updated model allows greater flexibility in how water is routed 

through the environment by dividing subbasins into upland and floodplain landscape units 

(LSUs; Figure 1.3.1; Bieger et al. 2017), allowing for a more nuanced understanding of pollutant 

sources from the landscape. Because SWAT+ is relatively new, few studies (n = 23) have used a 

SWAT+ model for modeling pollutants, compared to SWAT (n = 2,071; Gassman 2023). 

 

 

 
Figure 1.3.1. Illustration of the various spatial scales at which output from the Soil and Water 

Assessment Tool+ (SWAT+) can be summarized to understand sediment and nutrient yields and 

loads. SWAT+ estimates sediment (metric tons/ha), nitrogen (kg/ha), and phosphorus (kg/ha) 

yields from hydrologic response units, which can be summarized at a variety of spatial scales, 
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including farms and landscape units. Pollutant yields are routed to channels which become 

instream loads. Landscapes units are divided into upland and floodplain units in SWAT+, which 

is an improvement upon SWAT that lumped upland and floodplain units into a single subbasin.  

Data from the U.S. Geological Survey stream gages and Virginia Department of Environmental 

Quality long-term water quality stations (locations coincide with the gages) were used to 

calibrate and validate the SWAT+ model. 

 

 

Methods: 

We used the QSWAT+ interface (Dile et al. 2023; version 2.3.5) to prepare the data collected in 

task 1.2 for the SWAT+ model, which was run through the SWAT+ editor (Tech 2023; version 

2.2.2). Stream channels were created when 2 km2 (or 2,222 cells) drained to a cell in the NED 

layer. The NHD+ stream network was used to assist with channel creation. Channel geometry 

was calculated based on watershed drainage area using parameters from regional models (Bieger 

et al. 2015), where channel width (m) = 2.79 × drainage area0.42 (km2) and depth (m) = 0.23 × 

drainage area0.29 (km2).  Further, we updated channel slope values that were 0 (i.e., these slope 

values were unrealistic) based on the average slope from the upstream and downstream channels. 

Subbasins were created around each channel and those smaller than 25% of the mean subbasin 

area were merged. Next, we defined the hydrological response units (HRUs) by dividing the 

slope-range of the watershed into five equal classes, adding the soil and land-use data, and 

setting the HRU thresholds to zero.  

 

After the watershed was defined, the data were imported into the SWAT+ editor where climate 

data were added, and model parameters were defined using the default methods. We then 

calibrated the model for each gage in the upper CPH for streamflow (m3/sec), sediment loads 

(metric tons), nitrogen loads (kg), and phosphorus loads (kg) at daily (per d) and monthly (per m) 

time steps. To reduce the amount of time to complete calibration, the model was only run from 

2004–2009 with a two-year warmup period. After calibration was complete, we ran the model 

from 1998–2021 with a three-year warmup period and validated the model for the same variables 

from 2010–2021. We used the Nashe-Sutcliffe efficiency (NSE) to evaluate model performance 

for both calibration and validation; NSE values > 0.50 indicate satisfactory model performance 

for monthly time steps (Moriasi et al. 2007). Model fit was also evaluated by plotting measured 

pollutant and streamflow values against those estimated by the SWAT+ model and calculating 

correlation coefficients. 

 

We first calibrated the model for streamflow. We assessed the sensitivity of the SWAT+ model 

to changing the curve number, surface runoff lag coefficient, baseflow recession coefficient, 

available water content, soil evaporation compensation factor, return flow threshold, 

groundwater revap coefficient, deep aquifer recharge, plant uptake compensation factor, soil 

hydraulic conductivity, and Manning’s n for the channel using the SWAT+ Toolbox (James 

2022; version 1.0.2). Then, we calibrated the model against measured streamflow values using 

the dynamically dimensioned search algorithm in the SWAT+ Toolbox to determine the best 

values for the most sensitive parameters. 
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We calibrated the model for landscape and instream sediment processes separately. We first 

converted point measurements of total suspended solid concentrations (mg/L) collected by 

VDEQ (2022) to sediment loads (metric tons/day) by multiplying the concentration by the daily 

discharge and converting the units. Then, a linear relationship was developed between 

streamflow and sediment load at each VDEQ monitoring station and used to predict daily 

sediment loads from the daily streamflow data at each monitoring station. Then, we removed the 

effects of instream processes from the model by setting channel erosion and the channel cover 

factor to zero.  

 

After we removed instream processes, we assessed effects of changing the Universal Soil Loss 

Equation (USLE) cover and practice factors and adding a grazing operation. The USLE cover 

factor was changed from 0.005 to 0.5 and the USLE practice factor from 1 to 100 (i.e., 

unrealistically high numbers) to see if those changes influenced predicted daily sediment loads. 

We consulted a local Soil and Water Conservation District to determine the following parameters 

for the grazing operation: grazing occurring all year, default beef fertilizer, dry weight of 

biomass removed by grazing daily = 22.5 kg/ha, dry weight of biomass removed by trampling 

daily = 15 kg/ha, dry weight of manure deposited daily = 5.7 kg/ha, and minimum plant biomass 

for grazing to occur = 500 kg/ha. We expect 55% of the sediment load to come from the 

landscape (Noe et al. 2022); therefore, measured values were multiplied by 0.55 and compared to 

predicted values.  

 

After the model was calibrated for landscape sediment processes, instream processes were turned 

back on, and a sensitivity analysis was run using the SWAT+ Toolbox. We determined which 

parameters (i.e., channel erodibility, channel cover, the effect of peak flow rate on sediment 

routing in the subbasin, and the exponent and linear parameters for calculating channel sediment 

routing) had the greatest influence on the model so we could reduce the number of parameters 

included in the calibration process. Finally, we calibrated the model manually using the most 

sensitive parameters identified by the SWAT+ Toolbox. We completed the calibration manually 

because the SWAT+ Toolbox was unable to display very small values for soil erodibility. 

 

The model was calibrated for daily (per d) and monthly (per m) nitrogen (kg) and phosphorus 

(kg). We first converted point measurements of total nitrogen (mg/L) and total phosphorus 

(mg/L) to loads (kg/day) following a similar process as for sediment. Then, we developed a 

linear relationship between streamflow and nitrogen and phosphorus loads at each VDEQ 

monitoring station and used the relationships to predict daily nitrogen and phosphorus loads at 

each monitoring station. We assessed the influence of adjusting three parameters on the SWAT+ 

model’s ability to estimate nitrogen loads: 1) adding the previously described cattle grazing 

operation, 2) increasing the initial concentration of nitrogen in the aquifer to 1000 mg/L (i.e., an 

unrealistic number that reflects potential legacy nitrogen stored in the aquifer), and 3) changing 

the ratio of nitrogen in the surface runoff versus nitrogen that percolates into the soil to 1 (i.e., all 

the nitrate is in the surface runoff).We did not change parameters for phosphorus because the 

initial predictions seemed reasonable (Figure 1.3.7).  
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Results: 

We successfully calibrated the model for streamflow (Figures 1.3.2 and 1.3.3, Table 1.3.1). We 

found that the soil’s available water capacity (i.e., how much water the soil can hold) and soil 

hydraulic conductivity (i.e., the rate of water movement through the soil) had the most influence 

on streamflow predictions. Decreasing the soil’s available water content by 0.26 mm and 

increasing the soil hydraulic conductivity by 24.48 mm/hr were most effective in improving 

performance of the SWAT model. These variables may improve the model because they increase 

lateral flow through the soil, which could be an important contributor to high-flow events in the 

upper CPH because of the karst topography in the region. After calibration, the SWAT model 

generally predicted streamflow well and predictions were above or near the NSE cutoff of 0.50 

(Table 1.3.1). The only location where NSE values were much below 0.50 was USGS gage 

03529500, located in Big Stone Gap, Virginia (Figure 1.3.3). At most gages, SWAT+ 

overpredicted streamflow at low measured streamflow but underpredicted streamflow at high 

measured streamflow (Figures 1.3.2 and 1.3.3). Highly correlated (r > 0.86) log-transformed 

predicted and measured monthly streamflow at all gages also indicated good model fit. 

 

 

Figure 1.3.2. Streamflow (m3/sec/month) observed at U.S. Geological Survey gage 03475000 

(Middle Fork Holston River near Meadowview, Virginia, United States) compared to streamflow 

predicted by the Soil and Water Assessment Tool+. The Nash-Sutcliffe efficiency (NSE) for 

streamflow predictions at this gage was the second best of all gages and indicated good fit (0.76). 

Streamflow predictions were similar for most other gages except for 03529500 (Table 1.3.1,  

Figure 1.3.3). 
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Figure 1.3.3. Streamflow (m3/sec/month) observed at U.S. Geological Survey gage 03529500 

(Powell River at Big Stone Gap, Virginia, United States) compared to streamflow predicted by 

the Soil and Water Assessment Tool+. The Nash-Sutcliffe efficiency (NSE) for streamflow 

predictions at this gage was worse than all other gages and indicated unsatisfactory fit (0.34). 

Streamflow predictions at all other gages had NSE values near or above 0.5, indicating good fit 

(Table 1.3.1, Figure 1.3.2).
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Table 1.3.1. Results of the SWAT model calibration* (Cal; 2004–2009) and validation (Val; 2010–2021) for streamflow (m3/sec), 

sediment loads (metric tons), nitrogen loads (kg), and phosphorus loads (kg) for daily (D; per/d) and monthly (M; per/m) timesteps at 

11 gages** in the upper CPH. There were negligible differences between calibration and validation for nitrogen; therefore, results are 

shown for the entire modeling period (1998–2021). Lat = latitude; Lon = longitude 

*For calibration, the model period was truncated and run only for 2004–2009.  

**Gage 3527220 lacked associated sediment, nitrogen, and phosphorus data. 

   Streamflow  Sediment  Nitrogen  Phosphorus 

   D M  D M  D M  D M 

Gage Lat Lon Cal Val Cal Val  Cal Val Cal Val  Val Val  Cal Val Cal Val 

3531500 36.662 -83.095 0.52 0.57 0.50 0.49  0.26 0.13 0.10 -0.03  -0.24 -0.91  -31.34 -199.44 -6.78 -63.57 

3529500 36.869 -82.775 0.41 0.45 0.40 0.34  0.23 0.27 -0.53 0.27  -0.33 -1.21  -7.04 -103.25 -0.44 -33.12 

3527220 36.573 -82.939 0.49 0.50 0.64 0.45  - - - -  - -  - - - - 

3524000 36.945 -82.155 0.43 0.59 0.46 0.53  -0.02 -0.03 -0.46 -0.51  -0.26 -1.25  -4.14 -194.57 -0.36 -39.98 

3527000 36.649 -82.750 0.41 0.54 0.48 0.54  -0.07 -0.04 -0.47 -0.31  -0.18 -0.76  -0.07 -102.57 -1.30 -39.54 

3488000 36.897 -81.746 0.48 0.55 0.57 0.58  0.36 0.28 0.41 0.25  -0.28 -0.91  -134.20 -1138.90 -30.32 -399.90 

3475000 36.713 -81.819 0.39 0.38 0.66 0.76  0.28 0.21 0.37 0.27  -0.50 -1.58  -161.22 -548.15 -15.59 -135.52 

3474000 36.807 -81.622 0.50 0.63 0.63 0.73  0.29 0.32 0.21 0.46  -0.81 -2.40  -182.56 -2355.79 -18.93 -525.72 

3473000 36.652 -81.844 0.55 0.59 0.66 0.63  0.30 0.24 0.39 0.27  -0.25 -1.18  -100.68 -577.05 -22.61 -264.46 

3478400 36.632 -82.134 -2.25 -0.63 0.40 0.80  -0.75 0.21 0.16 0.40  -0.63 -1.30  -260.18 -139.44 -23.37 -27.42 

3471500 36.760 -81.631 0.29 0.48 0.56 0.65  -6.84 -1.22 -16.80 -5.02  -0.34 -1.37  -957.27 -2813.24 -204.11 -1095.52 
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We calibrated the SWAT+ model for sediment dynamics with mixed success (Figures 1.3.4 and 

1.3.5, Table 1.3.1). We found that the SWAT+ model initially predicted sediment loads that were 

several orders of magnitude too high. When we turned off the instream component of sediment 

processes, the SWAT+ model underpredicted sediment loads, especially at high-flow events. We 

attempted to improve predictions by increasing the effect of land use on soil erodibility (i.e., 

increasing the USLE cover and practice factors); however, these changes had little effect on the 

model at reasonable upper limits. Additionally, adding a grazing schedule had little effect on the 

model output. Based on visual interpretation of the data and the inherent uncertainty in the point 

estimates, we felt that model performance for the upslope component was adequate, and there 

was little we could do to improve the model further. Additionally, we had already observed that 

instream processes could compensate for the underprediction from the landscape.  

 

The sensitivity analysis revealed that channel erodibility was the parameter that had the most 

influence on the model. Therefore, we focused on changing the channel erodibility factor and 

found that setting the channel erodibility factor to 0.00002 cm3/N-s led to model predictions that 

were fairly close to the measured values for many gages (Table 1.3.1). However, predicted 

sediment loads were too high during most months at gages in the Powell and Holston river 

watersheds (Figure 1.3.4) but too low in the Clinch River watershed (Figure 1.3.5). Log-

transformed predicted sediment load was strongly correlated with log-transformed observed 

sediment load at all gages (r > 0.81), but the SWAT+ model tended to overestimate low 

observed values of sediment load and underestimate high observed values of sediment load 

(Figure 1.3.4; Figure 1.3.5). Overall, we felt the SWAT+ model did an adequate job of predicting 

sediment loads and the results could be used to identify watersheds that contribute high sediment 

yields, while acknowledging that predictions for the Clinch River are underestimated.   
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Figure 1.3.4. The sediment load (metric tons/month) observed at Virginia Department of 

Environmental Quality water quality monitoring station 6CMFH033.40 located near U.S. 

Geological Survey gage 03474000 (Middle Fork Holston River at Seven Mile Ford, Virginia, 

United States) compared to the sediment load predicted by the Soil and Water Assessment 

Tool+. The Nash-Sutcliffe efficiency for sediment load predictions at this gage was better than 

all other gages but indicated unsatisfactory fit (0.46). Sediment load predictions were similar at 

all other gages except those in the Clinch River (Table 1.3.1, Figure 1.3.5). 
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Figure 1.3.5. The sediment load (metric tons/month) observed at Virginia Department of 

Environmental Quality water quality monitoring station 6BCLN271.50 located near U.S. 

Geological Survey gage 03524000 (Clinch River at Cleveland, Virginia, United States) 

compared to the sediment load predicted by the Soil and Water Assessment Tool+. The Nash-

Sutcliffe efficiency for sediment load predictions were worse at this gage than all other gages 

and indicated unsatisfactory fit (-0.51). Sediment predictions extremely underestimated 

measured values at both gages in the Clinch River (Table 1.3.1). 

 

 

The SWAT+ model did not predict total nitrogen well (Table 1.3.1, Figure 1.3.6). None of the 

parameters that we evaluated (i.e., adding cattle grazing, increasing the initial concentration of 

nitrogen in the aquifer, and changing the nitrogen ratio in the surface runoff) influenced the 

model output for nitrogen loads. The SWAT+ model likely underpredicted nitrate: the output 

was about 60% nitrate and 40% organic nitrogen, but values observed in streams are typically 

closer to 80% nitrate and 20% organic nitrogen (VDEQ 2021). At all gages, the SWAT+ model 

greatly underpredicted total nitrogen loads (kg/month) compared to measured values (Figure 

1.3.6). Only results for the validation period are shown because we observed only small 

differences between calibration and validation. Despite the SWAT+ model greatly 

underpredicting nitrogen loads, high correlations (r = 0.71) among log-transformed predicted and 

measured values at all but one gage (r = 0.53) show that the model has promise to accurately 

predict nitrogen loads if parameters can be adjusted to increase predicted loads. When we 

increased the amount of manure deposited within the grazing operation to completely unrealistic 

levels, (i.e. 4,000 kg/cow/ha/day), predictions were closer to measured values, which suggests 

there may be something amiss with the way SWAT+ models nitrogen. 
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Figure 1.3.6. The total nitrogen load (kg/month) observed at Virginia Department of 

Environmental Quality water quality monitoring station 6BPOW138.91 located near U.S. 

Geological Survey gage 03531500 (Powell River near Jonesville, Virginia, United States) 

compared to the nitrogen load predicted by the Soil and Water Assessment Tool+. Because 

measured nitrogen loads were greatly underpredicted by the SWAT+ model, the Nash-Sutcliffe 

efficiency (NSE) indicated unsatisfactory fit for this gage (-0.91) and all other gages (Table 

1.3.1). 

 

 

The SWAT+ model also did not predict total phosphorus well (Figures 1.3.7 and 1.3.8, Table 

1.3.1). Phosphorus estimates were close to observed values for the truncated model on which we 

performed calibration, except for a few high-flow events (Figure 1.3.7); therefore, we felt that 

changing parameters would not improve phosphorus estimates. Thus, we proceeded without 

changing parameters in the model for phosphorus. However, when the model was run for the 

entire time period (1998–2021), phosphorus estimates during high-flow events were extremely 

too high (Figure 1.3.8), which may indicate the model is accumulating phosphorus throughout 

the modeling period. Log-transformed predicted total phosphorus loads were highly correlated (r 

> 0.76) with log-transformed observed total phosphorus loads at most gages and moderately 

correlated (r = 0.68) at one gage.  
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Figure 1.3.7. The total phosphorus load (kg/month) observed at Virginia Department of 

Environmental Quality water quality monitoring station 6BPOW138.91 located near U.S. 

Geological Survey gage 03531500 (Powell River near Jonesville, Virginia, United States) 

compared to the phosphorus load predicted by the Soil and Water Assessment Tool+ for the 

calibration period. This Nash-Sutcliffe efficiency (NSE) for phosphorus load predictions was the 

fourth best for this gage and indicated unsatisfactory fit (-6.78). Poor NSE values were largely 

driven by greatly overpredicting phosphorus during a few months and most locations, with 

measured values showing results similar to those shown in Figure 1.3.7, so we did not change 

parameters within the model for phosphorus.  
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Figure 1.3.8. The total phosphorus load (kg/month) observed at Virginia Department of 

Environmental Quality water quality monitoring station 6BPOW138.91 located near U.S. 

Geological Survey gage 03531500 (Powell River near Jonesville, Virginia, United States) 

compared to the phosphorus load predicted by the Soil and Water Assessment Tool (SWAT+) 

for the validation period. Because the SWAT+ model greatly overpredicted phosphorus loads at 

high measured levels of phosphorus, but underpredicted phosphorus at low measured levels, the 

Nash-Sutcliffe efficiency indicated unsatisfactory fit at this gage (-63.57) and all other gages 

Table 1.3.1). 
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Task 2: Analyze the influences of CPs, relative to other watershed features, on predicted 

sediment and nutrient loads in HUC12s across the upper CPH, excluding those encompassing 

mainstem rivers and those in the Cumberland Plateau coalfields.  

1. Interpret SWAT model outputs to distinguish the cumulative effects of CPs versus other 

watershed features on sediment and nutrient loading in HUC12s of the upper CPH. In 

particular, assess influences of soil characteristics (e.g., erodibility, texture), topography 

(e.g., standard deviation and length of slope), agricultural land use, impervious land cover, 

forest land cover, and CPs on sediment and nutrient loading. These potential influences will 

be examined for entire HUC12s. For the two focal watersheds (e.g., Copper Creek), these 

influences also will be examined for riparian networks (i.e., land within 100 m of a stream) 

within HUC12s. Relative influences of CPs on sediment and nutrient loads will be derived 

by comparing outputs of selected scenarios run through the calibrated SWAT model, 

wherein specific scenarios include or exclude the presence of existing CPs. For instance, an 

installed riparian buffer can be represented in a model run by adjusting the input FILTERW 

parameter for riparian-filter width, which influences sediment and nutrient loading via 

effects on hydrologic responses.  
 

Task 2.1: 

Caveats:  

We examined the influence of landscape features on sediment (metric tons/ha/yr) and nutrient 

yields (kg/ha/yr) from the landscape for the entire CPH (instead of just the two watersheds 

proposed) and at the landscape unit (LSU) resolution rather than the HUC-12 resolution. We 

chose the finer resolution because LSUs are divided into upslope and floodplain units (Figure 

1.3.1), which facilitates assessment of sediment and nutrient yields to both units (Bieger et al. 

2017). The division of LSUs into upslope and floodplain units also allows us to use three linear 

models rather than the six proposed in the 2022 annual report. We expect results at the LSU 

resolution to readily scale up to coarser resolutions. We were also unable to examine the relative 

influence of CPs on sediment and nutrient yields because the SWAT+ model was unable to 

accurately model cattle grazing in southwest Virginia (see Task 1.3 and Tasks 1 and 2 

Discussion).  

 

Methods: 

We used three multiple linear regression models to assess effects of watershed features on 

average annual sediment and nutrient yields from LSUs. The response variable in each respective 

model was the average annual sediment yield (metric tons/ha/yr), phosphorus yield (kg/ha/yr), 

and nitrogen yield (kg/ha/yr) for each LSU created in SWAT+. Nitrogen yield was calculated as 

the sum of the organic nitrogen transported in surface runoff and the nitrate transported in 

surface runoff. Phosphorus yield was calculated as the sum of the organic phosphorus in the 

surface runoff, the soluble phosphorus in the runoff, and the mineral phosphorus attached to the 

soil. We included landscape position (i.e., floodplain or upslope) as a categorical predictor 

variable and suppressed the intercept (Table 2.1.1). We also included proportion urban land 

cover, proportion forest land cover, proportion agricultural land cover, soil hydraulic 

conductivity, soil erodibility, and slope as predictor variables (Table 2.1.1). Lastly, we explored 
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all two-way interactions among the predictor variables. We used the stats package in the 

software R (R Core Team 2023) to build the linear models. 

 

 

Table 2.1.1. Descriptions of each predictor variable used in multiple linear regression models to 

assess effects of watershed features on average annual sediment yields (metric tons/ha/yr), 

nitrogen yields (kg/ha/yr), and phosphorus yields (kg/ha/yr).  

Variable Description 

Floodplain 
Categorical variable that indicates the landscape unit is adjacent to 

the stream channel (see Figure 1.3.1). 

Upslope 
Categorical variable that indicates the landscape unit is not 

adjacent to the stream channel (see Figure 1.3.1). 

Urban  Proportion of urban land cover within the landscape unit 

Forest  Proportion of forested land cover within the landscape unit 

Agriculture Proportion of agricultural land cover within the landscape unit 

Hydraulic conductivity (mm/hr) Rate of water movement through the soil 

Soil erodibility ([metric tons·ha·hr]/ 

[ha·MJ·mm])  
Universal Soil Loss Equation soil erodibility factor 

Slope (%) Average slope of the landscape unit 

 

 

Results: 

Our SWAT+ model contained 4,428 landscape units with varying landscape conditions and 

sediment and nutrient yields. The upslope land use was 20% agriculture, 69% forested, and 6% 

urban, whereas the floodplain land use was 27% agriculture, 47% forested, and 20% urban. The 

mean slope for upslope and floodplain LSUs was 31% and 14%, respectively. Floodplain LSUs 

had a mean hydraulic conductivity of 80.70 ± 26.82 mm/hr whereas upslope LSUs had a mean 

hydraulic conductivity of 82.91 ± 22.08 mm/hr. The mean soil erodibility for upslope and 

floodplain LSUs was 0.33 ± 0.04 metric tons·ha·hr/ha·MJ·mm and 0.32 ± 0.04 metric 

tons·ha·hr/ha·MJ·mm, respectively. The average sediment, nitrogen, and phosphorus yields for 

upslope LSUs were 1.82 metric tons/ha/yr, 0.32 kg/ha/yr, and 0.76 kg/ha/yr, respectively. The 

average sediment, nitrogen, and phosphorus yields for floodplain LSUs were 2.87 metric 

tons/ha/yr, 0.95 kg/ha/yr, and 1.34 kg/ha/yr, respectively. 

 

Several watershed features were related to pollutant yields (Tables 2.1.2, 2.1.3, 2.1.4). We 

dropped the predictor variables slope and forest because they were highly correlated (r > 0.6) 

with several other predictor variables. The three models explained 61%, 81%, and 76% of the 

variation in sediment, nitrogen, and phosphorus yield, respectively. Surprisingly, the proportion 

of agricultural land in a LSU was negatively associated with both sediment and nitrogen yield 

(Figure 2.1.1) but agriculture was a weak predictor in both models (Tables 2.1.2 and 2.1.3). The 

influence of agricultural land use on nitrogen yield depended on the landscape position (Figure 

2.1.2). In contrast, phosphorus yield was positively correlated with agricultural land (Figure 

2.1.3). These results may indicate that the SWAT+ model is not accurately representing cattle 

grazing and the model may require further changes to how agricultural land use is modeled 
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within SWAT+ (see Tasks 1 and 2 Discussion). Sediment and nitrogen yields were positively 

associated with increasing urban land use, phosphorus yields were negatively associated with 

increasing urban land use, and urban land use was a strong predictor of sediment and nitrogen 

yields (Tables 2.1.2, 2.1.3, 2.1.4) suggesting that urban lands are a major driver of sediment and 

nitrogen budgets within the SWAT+ model. As expected, increasing soil erodibility increased 

sediment, nitrogen, and phosphorus yields, and the effect of soil erodibility depended on 

landscape position. Hydraulic conductivity negatively affected sediment, nitrogen, and 

phosphorus yields, which may be because greater conductivity leads to more water moving 

through the soil (as opposed to over the soil surface), where sediment and nutrients are captured 

or stored in the soil profile or groundwater. In contrast, increased soil erodibility and hydraulic 

conductivity had negative and positive effects on phosphorus yields, respectively, but these 

relationships were not apparent when the relationships were plotted on a graph. 

 

 

Table 2.1.2. Results of a multiple linear regression model used to determine factors (Table 2.1.1) 

that influence sediment yield (metric tons/ha/yr) in the upper Clinch, Powell, and Holston 

watersheds for 4,428 landscape units. Overall, the model explained 61% of the variation in 

phosphorus yield and the partial R2 in the table shows how much of the residual variance each 

coefficient explains. The intercept was suppressed so the results for both floodplain and upslope 

landscape units can be easily interpreted. SD refers to standard deviation. 

Coefficient Estimate ± SD p-value R2 

Hydraulic conductivity -0.23 ± 0.04 < 0.01 0.08 

Urban 1.73 ± 0.05 < 0.01 0.18 

Floodplain 2.05 ± 0.06 < 0.01 0.20 

Upslope 3.39 ± 0.07 < 0.01 0.37 

Agriculture -0.37 ± 0.04 < 0.01 0.02 

Soil erodibility 0.92 ± 0.05 < 0.01 0.06 

Upslope X urban 1.59 ± 0.10 < 0.01 0.06 

Upslope X soil erodibility  -0.70 ± 0.08 < 0.01 0.02 
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Table 2.1.3. Results of a multiple linear regression model used to determine factors (Table 2.1.1) 

that influence nitrogen yield (kg/ha/yr) in the upper Clinch, Powell, and Holston watersheds for 

4,428 landscape units. Overall, the model explained 81% of the variation in nitrogen yield and 

the partial R2 in the table shows how much of the residual variance each coefficient explains. The 

intercept was suppressed so the results for both floodplain and upslope landscape units can be 

easily interpreted. SD refers to standard deviation. 

Coefficient Estimate ± SD p-value R2 

Hydraulic conductivity -0.04 ± 0.01 < 0.01 0.01 

Urban 0.48 ± 0.01 < 0.01 0.51 

Floodplain 0.75 ± 0.01 < 0.01 0.59 

Upslope 0.54 ± 0.01 < 0.01 0.43 

Agriculture -0.21 ± 0.01 < 0.01 0.12 

Soil erodibility < 0.01 ± 0.01 0.82 <0.01 

Upslope X agriculture 0.12 ± 0.01 < 0.01 0.02 

Upslope X soil erodibility -0.04 ± 0.01 < 0.01 <0.01 

 

 

Table 2.1.4. Results of a multiple linear regression model used to determine factors (Table 2.1.1) 

that influence phosphorus yield (kg/ha/yr) in the upper Clinch, Powell, and Holston watersheds  

for 4,428 landscape units. Overall, the model explained 76% of the variation in phosphorus yield 

and the partial R2 in the table shows how much of the residual variance each coefficient explains. 

The intercept was suppressed so the results for both floodplain and upslope landscape units can 

be easily interpreted. SD refers to standard deviation. 

Coefficient Estimate ± SD p-value R2 

Hydraulic conductivity -0.17 ± 0.01 < 0.01 0.04 

Urban -0.13 ± 0.01 < 0.01 0.02 

Floodplain 1.36 ± 0.01 < 0.01 0.64 

Upslope 0.80 ± 0.01 < 0.01 0.34 

Agriculture 0.17 ± 0.01 < 0.01 0.06 

Soil erodibility 0.31 ± 0.01 < 0.01 0.11 

Upslope X urban 0.14 ± 0.02 0.01 0.01 

Upslope X soil erodibility -0.04 ± 0.01  0.04 <0.01 

Upslope X hydraulic conductivity 0.20 ± 0.02 <0.01 0.02 
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Figure 2.1.1. The relationship (r = -0.60) between proportion of agricultural land use and 

sediment yield (metric tons/ha/yr) as predicted by the Soil and Water Assessment Tool for 4,428 

landscape units.  
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Figure 2.1.2. The relationship between proportion of agricultural land use and nitrogen yield 

(kg/ha/yr) as predicted by the Soil and Water Assessment Tool for 4,428 landscape units. A 

multiple linear regression model indicated that the relationship varied by landscape position, so 

the points are identified as being derived from upslope (grey) or floodplain (black) units. 

Nitrogen yield was more strongly associated with the amount of agricultural land use within 

floodplain units (r = -0.33) than upland units (r = -0.07). 
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Figure 2.1.3. The relationship (r = 0.28) between proportion of agricultural land use and 

phosphorus yield (kg/ha/yr) as predicted by the Soil and Water Assessment Tool for 4,428 

landscape units. 

 

 

Tasks 1 and 2 Discussion: 

We encountered several challenges in building a SWAT+ model to estimate sediment and 

nutrient loads in the upper CPH. We outline these challenges, steps we took to overcome those 

challenges, and directions for future research that could lead to a better SWAT+ model.  

 

A preliminary SWAT+ model gave sediment estimates that were over 100 times too high 

because channels were too wide and deep based on the default parameters for calculating channel 

morphology. Therefore, we replaced the parameters with regional estimates from Bieger et al. 

(2015). The widths and depths of headwater streams were still too large, resulting in 

overestimation of sediment concentrations in headwater streams despite replacing the default 

parameters with regional estimates. For example, the SWAT+ model provided daily annual 

sediment estimates that averaged 140.72 mg/L for the sites that we sampled for task 3.4, but the 

average of our measured values was only 4.23 mg/L (Table 3.4.2). Because sediment 

concentrations were too high in headwater streams, we could not compare sediment 

concentrations among watersheds at finer scales (e.g., HRUs and LSUs) but we felt that 

comparisons among watersheds at coarser scales (e.g., HUC-12) would be appropriate because 

sediment concentrations would be aggregated. We suggest that future studies carefully check 
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stream width and depth for streams of all sizes. Further, parameters used to calculate 

channel morphology need to be defined for the specific area of interest (i.e., rather than 

broader regions) and encompass streams of all sizes before building SWAT+ models. 

  

The influence of choices regarding watershed delineation, geospatial layers, and HRU thresholds 

are rarely discussed within tutorials or manuals; therefore, we often made decisions based on the 

best available data, what was feasible, and consultation with SWAT experts from the USDA 

Agricultural Research Service. Watershed creation involves choices including thresholds for 

creating channels, if a stream layer (and which one) should be used to assist in channel 

delineation, and landscape delineation thresholds. For example, we used a threshold of 2 km2 to 

delineate channels because a larger threshold resulted in substantially fewer channels and a 

smaller threshold did not add any major channels. Building the SWAT+ model also includes the 

choice of geospatial layers (e.g., topography, soil, and land-use data) to create the watershed and 

run the model. For example, we used the STATSGO soil layer instead of SSURGO because 

SSURGO frequently caused QGIS to crash and resulted in SWAT+ run times greater than two 

days. There are also several choices when creating HRUs. We decided not to remove HRUs from 

our final model because we felt that more HRUs would be more representative of the watershed 

and would allow for better CP scenarios (Her et al. 2015). However, after building our model, we 

learned that having too many HRUs significantly slows model runs and makes calibration more 

difficult (Jeffery Arnold, USDA Agricultural Research Station, 21 March 2024, written 

communication). Ideally, we would run SWAT+ using different model inputs, assess the effects 

on model output, and repeat the process until the best inputs are chosen; however, there are too 

many parameter choices to complete this in a reasonable project timeline. We suggest that 

future studies focus on quantifying the most appropriate model inputs.  

 

We also had problems with the software available, especially calibration software. Because 

SWAT+ was relatively new when we started the project, we encountered several instances where 

the terms and units in the graphical user interface (GUI) did not match those in the user manual 

(e.g., the GUI displayed the units for nitrate in the aquifer as kg but the user manual showed 

mg/L). Luckily, these problems became less pervasive as the software evolved and will 

hopefully not be a major issue moving forward. In addition to SWAT+ software, we had 

difficulty with the calibration software. We first used SWATCUP to calibrate the model. The 

coding language makes this a difficult software to use. Further, it was difficult to code for the 

desired parameters because many had different names than those used by SWAT+. Lastly, we 

encountered instances where the SWATCUP output did not match the output from SWAT+. The 

support team was responsive but somewhat dismissive of our problem. After much trial and 

error, we discovered that a file was being copied incorrectly by the software. The SWAT+ 

toolbox was much easier to implement because it is a GUI but was limited in its capability. We 

suggest that future studies use the SWAT+ toolbox for calibration, but more work is 

needed to improve its functionality.  

 

The SWAT+ model had difficulty accurately modeling sediment loads in streams of the upper 

CPH. We found that higher values for channel erodibility led to better sediment estimates in the 
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Clinch River basin compared to other watersheds, especially in larger channels. Therefore, 

sediment estimates could be improved if the SWAT+ model was divided into separate models for 

the Clinch, Powell, and Holston river watersheds. Developing a separate model for each 

watershed would allow for unique watershed-specific adjustments to parameters such as channel 

erodibility but require greater time for calibration. We suggest that future research carefully 

weigh the pros (e.g., decreased calibration time) and cons (e.g., a single parameter may not 

represent the entire watershed) of modeling large watersheds using a single SWAT+ model.  

 

Poor sediment estimates may also result from limitations in how SWAT+ models sediment loss 

from the landscape. We found that as the proportion of agricultural land use within a watershed 

increases, the sediment yield decreases (Figure 2.1.1) but is well known that sediment from 

agricultural land use is a pervasive problem in southwest Virginia (VDEQ 2004, 2009, 2014). 

SWAT+ may not be accurately capturing the pathways through which cattle grazing influences 

sediment yields in southwest Virginia. SWAT+ uses the USLE equation to model sediment loss, 

which assumes overland flow (Boomer et al. 2008). But many pastures in southwest Virginia are 

vegetated, with eroding streambanks acting as key sources of fine sediment. If the destabilizing 

effects of cattle grazing on streambanks were included in SWAT+, it may make for a more 

realistic model and allow for scenario analyses assessing the effects of altering grazing 

operations (e.g., rotational grazing and excluding cattle from riparian areas), which was initially 

a goal of this research. We suggest that future studies develop model extensions that capture 

streambank erosion pathways of sediment deposition within streams. 

 

The SWAT+ model unsatisfactorily predicted nitrogen in our study area. Our SWAT+ model 

initially greatly underpredicted total nitrogen loads, which was likely due to underprediction of 

nitrate. Increasing the initial concentration of nitrate in the aquifer, changing the nitrate 

percolation coefficient, and adding a cattle grazing operation did not improve nitrogen estimates. 

Similarly, Singh et al. (2023) and Buhr et al. (2022) found that nitrogen estimates were not 

sensitive to the nitrate percolation coefficient. Factors that nitrogen estimates were sensitive to 

include the humus mineralization of active organic nutrients (Singh et al. 2023) and 

denitrification exponential rate coefficient (Buhr et al. 2022, Singh et al. 2023). SWAT+ may not 

accurately represent nitrogen movement within the karst system of the CPH, the cattle grazing 

operation is not accurately simulating nitrogen deposition on the landscape, or SWAT+ is unable 

to account for legacy nitrogen, which can be stored in the groundwater for decades (Hamilton 

2012). Extensions already developed for SWAT, such as SWAT-MODFLOW-RT3D (Wei 

et al. 2019), may help improve nitrogen estimates for SWAT+. 

 

The SWAT+ model also unsatisfactorily predicted phosphorus. It was strange that the SWAT+ 

model reasonably predicted phosphorus for the calibration period but not the validation period — 

especially considering that there were not major differences in sediment estimates between the 

two periods and phosphorus is typically associated with sediment. Legacy phosphorus could be 

accumulating in the streambed and resuspended during high-flow events (Wallington et al. 

2024). We did not spend much time attempting to improve phosphorus estimates because we 

were more concerned about sediment. Future studies might improve phosphorus estimates by 
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using extensions (e.g., SWAT+P.R&R) that more accurately capture the role of instream 

processes on phosphorus transport within a watershed (Wallington and Cai 2023) or by 

adjusting some of the following parameters: phosphorus enrichment ratio for loading with 

sediment, the phosphorus availability index, or the parameters affecting instream 

phosphorus (e.g., local settling rate for organic phosphorus).  
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Task 3: Quantify relations among CP implementation, observed instream water quality and 

habitat quality, and observed biotic assemblages at the spatial resolution of HUC12s or larger 

(depending on spatial distribution of existing data). 

1. Based on the SWAT-based analyses above, develop maps (at HUC12 resolution) to 

represent spatial variation in sediment loading, nutrient loading, and CP implementation 

across the upper CPH.  

2. Consult databases maintained by state and federal agencies to compile a complete geo-

referenced database on water quality, habitat quality, and biotic conditions at HUC12 

resolution across the upper CPH.  

3. Select two focal watersheds, each comprising multiple HUC12s, to conduct more in-depth 

analyses and field studies. Focal watersheds will be selected after consultation with state 

and federal biologists; selections will be based on availability of supplemental data on 

water/habitat quality and on the presence of priority at-risk aquatic species. One of these 

watersheds will be the Copper Creek watershed in the Clinch River drainage. Preliminary 

candidates for the other watershed include Middle Fork Holston River and Wallen Creek 

(tributary to Powell River). 

4. Quantify effects of land management, including CPs, on instream conditions by surveying 

water quality, streambank stability, benthic habitat quality, and benthic macroinvertebrates 

(BMIs) at 10 sites per focal watershed (20 sites total). Sites will be selected to represent the 

full range of predicted sediment and nutrient loading in HUC12s across the respective focal 

watersheds. Sites will be 150-200 m long, encompassing two contiguous riffle/pool 

complexes. The downstream end of each site will be >200 m upstream of the confluence 

with the receiving stream. Instream surveys will be conducted in August-October to match 

VDEQ biomonitoring schedules. Water samples will be collected quarterly during base-flow 

conditions for one year to represent seasonal variation. Concentrations of total nitrogen, 

total phosphorus, and coliforms will be measured, as well as conductivity and turbidity.  A 

modified USGS protocol (Fitzpatrick et al. 1998) will be used to characterize streambank 

and channel conditions. BMIs will be sampled via the VDEQ protocol (VDEQ 2008). 

Briefly, riffles will be sampled at base flow with a D-frame dip net, then a 110-organism 

sub-sample will be sorted and identified to genus in the laboratory. The eight metrics 

associated with the Virginia Stream Condition Index (VSCI) will be calculated (VDEQ 

2008). We will use aerial imagery to “ground-truth” CPs reportedly installed in focal 

watersheds. Instream data will be summarized as dependent variables in regression 

analyses to assess responses to watershed features, such as CP implementation, predicted 

sediment loading, topography, and land use. In these analyses, we will examine responses of 

individual measures (e.g., embeddedness) as well as multi-metric indices (e.g., VSCI) and 

component metrics. 

5. Provide a detailed outline and discussion of the proposed database, how it should operate, 

and the inputs required. 
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Task 3.1:  

Results: 

We used the results from the SWAT+ model (see Task 1.3) to create maps of yearly pollutant 

yields from HUC-12 watersheds in the upper CPH. Conservation practices are especially 

concentrated in the Big Moccasin Creek-North Fork Holston River, Copper Creek, Laurel Creek-

North Fork Holston River, Little River, Rowland Creek-South Fork Holston River, Middle Fork 

Holston River, and Wallen Creek-Powell River HUC-10 watersheds (Figure 3.1.1). Sediment 

yield (metric tons/ha/yr) was high in the Abrams Creek-North Fork Holston River, Dumps 

Creek-Clinch River, Middle Fork Holston River, North Fork Clinch River-Clinch River, Stony 

Creek-Clinch River, Swords Creek-Clinch River, and Wallen Creek-Powell River Guest River 

HUC-10 watersheds. Nitrogen yield (kg/ha/yr) was high in the Dumps Creek-Clinch River, 

Laurel Creek-South Fork Holston River, Middle Fork Holston River, North Fork Clinch River-

Clinch River, South Fork Powell River-Powell River, Stony Creek-Clinch River, and Swords 

Creek-Clinch River HUC-10 watersheds (Figure 3.1.3). Lastly, phosphorus yield (kg/ha/yr) was 

high in the Abrams Creek-North Fork Holston River, Laurel Creek-South Fork Holston River, 

Dumps Creek-Clinch River, Middle Fork Holston River, Rowland Creek-South Fork Holston 

River, Tumbling Creek-North Fork Holston River, and Wallen Creek-Powell River HUC-10 

watersheds (Figure 3.1.4). 
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Figure 3.1.1. The distribution of agricultural conservation practices (CPs) implemented by the 

Virginia Department of Conservation and Natural Resource Conservation Service in the upper 

Clinch, Powell, and Holston watersheds (see task 1.1 for a description of the CP databases). 

HUC-12 watersheds were categorized as low, medium, or high CP count, with an equal number 

of watersheds in each bin.  
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Figure 3.1.2. The mean annual sediment yield (metric tons/ha/yr) delivered to the stream in each 

HUC-12 watershed in the upper Clinch, Powell, and Holston watersheds as predicted by the Soil 

and Water Assessment Tool+ model described in task 1.3. HUC-12 watersheds were categorized 

as low, medium, or high sediment yield, with an equal number of watersheds in each bin.  
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Figure 3.1.3. The mean annual nitrogen yield (kg/ha/yr) delivered to the stream in each HUC-12 

watershed in the upper Clinch, Powell, and Holston watersheds as predicted by the Soil and 

Water Assessment Tool+ model described in task 1.3. HUC-12 watersheds were categorized as 

low, medium, or high nitrogen yield, with an equal number of watersheds in each bin.  
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Figure 3.1.4. The mean annual phosphorus yield (kg/ha/yr) delivered to the stream in each 

HUC-12 watershed in the upper Clinch, Powell, and Holston watersheds as predicted by the Soil 

and Water Assessment Tool+ model described in task 1.3. HUC-12 watersheds were categorized 

as low, medium, or high phosphorus yield, with an equal number of watersheds in each bin.  

 

 

Task 3.2: 

Caveats:  

We completed approximately half of this task (as proposed) but did not use the compiled data in 

further analyses. We felt that increasing the number of sampling locations (from 20 to 31; see 

task 3.3) along our gradients of sediment yield and CP implementation provided more insight 

regarding the influence of CPs on stream health (i.e., completing project objectives) than any 

coarse-scale analysis we might derive from the existing data maintained by agencies. We 

expected such data to be fraught with temporal and spatial biases and confounding factors, 

thereby rendering interpretation of analytical results ambiguous. Thus, with concurrence from 

NRCS, we left this task incomplete. 

 

Results: 

We obtained macroinvertebrate collection data from TVA and VDEQ. The TVA dataset contains 

168 unique collections from the Clinch-Powell drainages from 2000–2015. The VDEQ dataset 
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contains 65 unique collections from the entire upper CPH from 2001–2016. Various water 

quality data are available for many of the VDEQ collections.  

 

Task 3.3: 

Caveats: 

We chose to select five HUC-10 watersheds (rather than the single HUC-10 proposed) so that we 

could capture a broader range of sediment yield and CP installation intensity in our analyses. 

 

Methods: 

We selected 31 sites within the Copper Creek, Laurel Creek, Tumbling Creek, Big Moccasin 

Creek, and Big Cedar Creek HUC-10 watersheds for intensive study (Figure 3.3.1, Table 3.3.1). 

Copper Creek is within the Clinch River HUC-8 watershed, whereas Laurel Creek, Tumbling 

Creek, Big Moccasin Creek, and Big Cedar Creek are within the North Fork Holston HUC-8 

watershed. A previous study in the Copper Creek watershed (Martin 2019) delineated 87 

subbasins and we chose a subset of those that represented a range of potential sediment yield 

(tons/ha) and CP implementation intensity. We first removed all subbasins that were < 0.5 km2 

and those that drained to segments ≥ 3rd order (Strahler). For each subbasin, we determined the 

number of CPs, the percentage riparian agricultural use (i.e., within a 30-m buffer around the 

stream), and potential sediment yield as determined from the SWAT model described in Martin 

(2019). Each subbasin was then ranked as high, medium, or low for each category. We removed 

all subbasins that were ranked as low agricultural use and those with medium CP count or 

potential sediment yield. We chose 3–4 sites that fit in each of the following categories: “low 

sediment yield, high CP count”; “low sediment yield, low CP count”; high sediment yield, high 

CP count”; high sediment yield, low CP count”. Based on our ranking scheme and a visit to 

potential sampling locations, we selected an initial 15 subbasins for intensive study in the Copper 

Creek watershed in autumn 2019. We selected a single site per subbasin within 200 m of the 

pour point so that instream data could easily be matched with SWAT+ output. In autumn 2020, 

we repeated the ranking scheme for the entire CPH using data from a preliminary SWAT+ model 

for the entire CPH. The expanded SWAT+ model revealed that all but two sites within the 

Copper Creek watershed were now in the category “high sediment yield, high CP count”, so we 

focused on picking 5–6 sites for each of the other three categories. After visiting the potential 

sites, we selected an additional 16 for intensive study.  
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Figure 3.3.1. Spatial distribution of the 31 sites we chose for intensive study. Sites were chosen 

to represent a range of sediment yields (metric tons/ha/yr) and conservation practice (CP) 

installation intensity. 
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Table 3.3.1. We chose 31 sites in the Copper Creek, Laurel Creek, Tumbling Creek, Big Moccasin Creek, and Big Cedar Creek HUC-

10 watersheds for intensive study. The table reports the site identification code (ID), subbasin number assigned by SWAT (SB), 

stream name and order (Ord) derived from the National Hydrography Dataset, and the latitude (Lat) and longitude (Lon) of the site. 

Also provided are the average annual sediment yields (Sed) of the subbasins from 2001–2019 (tons/ha/yr), number of conservation 

practices  within the subbasin (CP), percent agriculture (Ag) within the riparian area of the subbasin, and the corresponding ranks of 

each. 

ID SB Name HUC10 Ord Lat Lon Sed Rank CP Rank Ag Rank 

BC-LC678 678 Little Cedar Creek Big Cedar Creek 3 36.8658 -82.1145 17.86 High 0 Low 18 Med 

BC-MB584 584 Mountain Branch Big Cedar Creek 2 36.8945 -82.0254 23.48 High 0 Low 35 High 

BC-WB666 666 Willis Branch Big Cedar Creek 3 36.8658 -82.1145 23.76 High 0 Low 54 High 

BM-NF734 734 North Fork Moccasin Creek Big Moccasin 2 36.8294 -82.1458 16.65 High 0 Low 31 High 

BM-NF832 832 North Fork Moccasin Creek Big Moccasin 3 36.8037 -82.1519 23.44 High 0 Low 64 High 

BM-SF836 886 South Fork Moccasin Creek Big Moccasin 1 36.7976 -82.1535 1.31 Low 0 Low 33 High 

CC-AB29 637 Amos Branch Copper Creek 1 36.7661 -82.4277 21.12 High 124 High 33 High 

CC-CC05 1707 Copper Creek Copper Creek 2 36.8426 -82.2247 26.75 High 120 High 41 High 

CC-CC44 921 Culbertson Creek Copper Creek 2 36.7472 -82.4755 26.40 High 157 High 32 High 

CC-FB75 1264 Flower Branch Copper Creek 1 36.6696 -82.5935 3.25 Med 30 High 36 High 

CC-GC24 823 Grassy Creek Copper Creek 1 36.7827 -82.3493 21.07 High 38 High 34 High 

CC-JB25 875 Jessee Branch Copper Creek 2 36.7719 -82.3839 27.97 High 125 High 66 High 

CC-LC16 712 Little Copper Creek Copper Creek 2 36.8003 -82.2693 18.95 High 200 High 58 High 

CC-MC14 752 Moll Creek Copper Creek 1 36.8139 -82.3021 39.33 High 30 High 57 High 

CC-MC22 837 Moll Creek Copper Creek 2 36.7842 -82.3242 18.08 High 14 Med 37 High 

CC-OC56 1010 Obeys Creek Copper Creek 2 36.7229 -82.5517 28.01 High 68 High 38 High 

CC-PB64 1141 Peters Branch Copper Creek 1 36.7157 -82.5571 31.82 High 79 High 38 High 

CC-PC67 1171 Plank Camp Creek Copper Creek 2 36.6888 -82.5784 34.14 High 29 High 32 High 

CC-SB58 1102 Strong Branch Copper Creek 1 36.7190 -82.5531 30.98 High 97 High 34 High 

CC-UC03 621 Unnamed Copper Creek 1 36.8623 -82.1986 19.89 High 178 High 33 High 

CC-UC15 808 Unnamed Copper Creek 1 36.8003 -82.2693 14.48 High 38 High 70 High 

LC-CB576 576 Crewey Branch Laurel Creek 2 36.9008 -81.6117 0.21 Low 48 High 48 High 

LC-UC559 559 Unnamed Laurel Creek 1 36.9006 -81.6223 0.00 Low 156 High 45 High 

LC-UC756 754 Unnamed Laurel Creek 2 36.8413 -81.7652 0.70 Low 78 High 59 High 
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LC-W0422 422 White Oak Branch Laurel Creek 2 36.9475 -81.5353 0.63 Low 41 High 40 High 

TC-BC868 868 Brumley Creek Tumbling Creek 3 36.8070 -82.0150 0.01 Low 0 Low 27 High 

TC-EF639 639 East Fork Wolf Creek Tumbling Creek 2 36.8506 -81.9063 1.44 Low 29 High 15 Med 

TC-RM582 582 Rich Mountain Creek Tumbling Creek 1 36.8681 -81.8757 0.26 Low 0 Low 20 Med 

TC-SH803 803 Steel Hollow Tumbling Creek 1 36.8070 -82.0150 1.80 Low 0 Low 11 Med 

TC-UC792 792 Unnamed Tumbling Creek 1 36.8020 -82.0284 0.62 Low 0 Low 5 Med 

TC-WF1719 1719 West Fork Wolf Creek Tumbling Creek 3 36.8342 -81.9297 17.41 High 0 Low 30 High 
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Task 3.4: 

Caveats:  

Instead of sampling >200 m upstream of confluences, we selected sites as close to confluences as 

possible, so we can more easily link findings to the SWAT+ output. Also, to save on travel costs 

and directly link water quality and macroinvertebrate data, we collected water quality samples 

only twice per year rather than quarterly. Rather than using aerial imagery to ground-truth CPs, 

we used landowner surveys (Mouser 2024, Chapter 3) to characterize the condition of CPs. We 

proposed using path analysis to continue exploring indirect effects that CPs have on biota 

through their effects on water and habitat quality; however, we were unable to develop 

informative path models that fit the data. Finally, we did not include results of the boosted 

regression tree models in this report because the information was largely redundant with 

information from other models. The boosted regression tree models were initially built to explore 

non-linear relationships between CPs, landscape variables, water quality, and instream habitat 

and biota. The effects of CPs, agricultural land use, and total nitrogen on biota were similar to 

those found in Figures 3.4.1, 3.4.2, and 3.4.3, respectively.  

 

Methods:  

We collected data on water quality, instream condition, and habitat from the 31 sites described 

for task 3.3 (Table 3.4.1). Temperature (˚C), pH, conductivity (µS/cm), dissolved oxygen 

(mg/L), and discharge (m3/sec) were collected at each site during autumn 2019, 2020, and 2021 

and during spring 2020, 2021, and 2022. Starting spring 2020, we conducted pebble counts 

(Wolman 1954) and measured embeddedness as indicators of instream habitat during each 

collection period. Pebble counts were conducted by measuring the intermediate axis on 100 

substrate particles selected from a riffle. The median particle size was determined for each 

collection event at each site (D50). Embeddedness was measured on the same particles by 

measuring the entire height of the particle perpendicular to the stream bed and the depth of the 

embedded plane. The depth of the embedded plane was then divided by the entire height of the 

particle and averaged across all particles measured at a site during a collection event (hereafter 

measured embeddedness). In spring 2022, we visually estimated bank stability (score 0–10 for 

each bank then summed, where 0 means 100% of the bank has erosional scars and 10 means 0% 

of the bank has erosional scars) and embeddedness (score 0–20, where 0 means gravel, cobble, 

and boulder particles are 100% surrounded by fine sediment and 20 means gravel, cobble, and 

boulder particles are 0% surrounded by fine sediment; hereafter visual embeddedness). These 

estimated habitat indices were assessed over an entire site, following the USEPA rapid habitat 

assessment protocol for high-gradient streams (Barbour et al. 1999, Appendix A-1). During each 

sampling period except spring 2020 we collected water quality samples. Water quality sampling 

was not conducted in spring 2020 because of because of laboratory closures due to COVID-19. 

We collected 1000 ml of water for total suspended solid samples (TSS), 250 ml for both total 

nitrogen (TN) and total phosphorus (TP) samples, and 100 ml of water for bacteria samples (total 

fecal coliform bacteria and E. coli bacteria). Water samples were stored on ice and returned to 

the Water Quality Laboratory at Virginia Tech within 24 hours for analysis.  

 

To collect benthic macroinvertebrates, we kicked a total of 3 m2 of riffle habitat into a D-frame 

net (Barbour 1999). Macroinvertebrate samples were stored in 100% ethanol. Macroinvertebrate 
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samples were identified to genus by an independent contractor that maintains Society for 

Freshwater Science genus-level certification. We summarized macroinvertebrate collections 

using the Virginia Stream Condition Index (VSCI; Burton and Gerritsen 2003) and by the 

proportion of individuals classified as Ephemeroptera, Plecoptera, or Trichoptera minus 

individuals in the pollution-tolerant family Hydropsychidae (hereafter EPT). 

 

We collated landscape variables (i.e., slope and agriculture) that might influence stream health. 

We extracted the slope of each subbasin (%) from the SWAT+ model built for Task 1.3. We also 

calculated the percent agricultural land use within the subbasin containing our site by calculating 

the number of pixels for each NLCD land use category within the buffer (USGS 2019b), dividing 

the number of pixels for both hay/pasture and row crop land use by the total number of pixels, 

and multiplying by 100. We felt that these two variables might account for variation in the 

aquatic community not explained by our other variables. 

 

We characterized the condition of CPs by surveying landowners as part of another study funded 

by the Global Change Center at Virginia Tech (Mouser 2024, Chapter 3). We mailed surveys to 

889 landowners that asked if they still used their CPs after their cost-share contracts ended. The 

surveys were also used to identify landowner characteristics that influence continued use of CPs 

after contracts ended. Results from the survey were used to retain expired CPs in the analysis 

according to the level of persistence reported in the surveys.  

 

We developed mixed-effect linear regression models to explore the effects of water quality, 

instream habitat, and CPs on aquatic biota. We built the regression models using the lme4 

package (Bates et al. 2015) in R (R Core Team 2023). Our response variables for the mixed-

effect linear regression models were the VSCI and EPT. Our predictor variables in the mixed-

effect linear regression models included CP density within the subbasin, CP density squared (to 

capture potential quadratic effects), average subbasin slope, all the habitat variables, and all the 

water quality variables (Table 3.4.1). All water quality variables were natural log-transformed to 

reduce the influence of outliers and to approximate a normal distribution. Similarly, CP density, 

D50, and slope were square root-transformed. Each variable was also scaled and centered to have 

a mean of zero and standard deviation of one. All variables were checked for correlations to 

avoid collinearity; none were highly correlated. Lastly, we included site, watershed, and season 

as random variables in the model to account for spatial and seasonal autocorrelation. We 

expected that CPs would first influence water quality and habitat, both of which would 

eventually shape the aquatic assemblage, and these relationships would be constrained by 

landscape conditions; therefore, we explored these relationships separately using the models 

described below. 
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Table 3.4.1. Descriptions of each predictor variable used in the regression models that assess 

effects of landscape variables, water quality, instream habitat, and conservation practices (CPs) 

on aquatic biota.  

 

 

We modeled relationships among CP density, landscape variables, habitat variables, and water 

quality variables using simple linear, exponential decay, and linear plateau models. Because 

sampling multiple times at the same site resulted in pseudoreplication and a random effect could 

not be added to these types of models, we calculated the mean of each variable for each site (i.e., 

reducing the data to 31 rows). We calculated the arithmetic mean for all variables except E. coli 

bacteria, and instead calculated the geometric mean, which is more appropriate for left-skewed 

data. We then calculated correlations among all variables and found that TP was significantly 

correlated with TSS and E. coli bacteria was significantly correlated with fecal coliform bacteria; 

therefore, we focus on TSS and E. coli bacteria going forward. Likewise, we dropped measured 

embeddedness from the following analyses because having two measures of embeddedness was 

redundant and initial analyses did not reveal any significant relationships with measured 

embeddedness. We visually assessed for outliers using boxplots and a plotting Cook’s distance 

values. The plots revealed potential outliers for N, TSS and E. coli bacteria but we chose not to 

remove the outliers for N and TSS because their distribution was similar to non-outliers and their 

removal did not significantly change the model outputs described below. However, the outlier 

for E. coli bacteria did not follow the general pattern and came from a site that had consistently 

higher values than other sites (presumably because of constant cattle access at one of our 

smallest sites), so it was removed. Simple linear regression models were built using the lm 

Variable Description 

CP density (CPs/ha) 
Number of CPs within the subbasin containing the site divided by the 

area of the subbasin 

CP density2 (CPs/ha) 
Number of CPs within the subbasin containing the site divided by the 

area of the subbasin squared 

Slope (%) Average slope of the subbasin containing the site 

Agriculture Percent agricultural land use within the subbasin containing the site 

Measured embeddedness (%) 
Average height of the embedded plane divided by the entire height for 

100 particles collected at each site 

Visual embeddedness (unitless) 
Visual estimate from 0–20, where 0 indicates the substrate particles at 

the site are 100% surrounded by fine sediment and 20 indicates 0% 

D50 (mm) 
Median length of the intermediate axis measured on 100 substrate 

particles collected at each site 

Bank stability (unitless)  
Visual estimate from 0–10 for each streambank (summed), where 0 

indicates 100% of the bank has erosional scars and 10 indicates 0% of 

the bank has erosional scars 

Total suspended solids (mg/L) Concentration of suspended solids in the water at each site 

Total nitrogen (mg/L) Concentration of nitrogen in the water at each site 

Total phosphorus (mg/L) Concentration of phosphorus in the water at each site 

E. coli (most probable number/100 ml)  Concentration of E. coli bacteria in the water at each site 

Fecal coliform (most probable number/100 ml) Concentration of fecal coliform bacteria in the water at each site 
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function from the stats package in R (R Core Team 2023). We used the functions 

asymptotic_ineg and linear.plateau from the AgroReg package (Shimizu and Goncalves 2023) to 

build the exponential decay and quadratic plateau models. We used visual inspections of 

relationships, model coefficient p-values, and indices of the proportion variation explained (i.e., 

R2 and pseudo-R2) to determine which model best explained the influence of CP density on each 

variable. None of those models could adequately explain the relationship between CP density 

and visually estimated embeddedness or CP density and bank stability, so we used the function 

chgptm from the package chngpt to model a breakpoint regression with two disjunct flat lines 

(Fong et al. 2017).  

 

We explored the relationship between macroinvertebrate community and water quality and 

habitat using Threshold Indicator Taxa Analysis (TITAN; Baker et al. 2023). We removed taxa 

with less than five observations and ran TITAN using 500 bootstrapped runs. We determined the 

values at which the macroinvertebrate community exhibits two threshold responses — one where 

taxa respond negatively and one where taxa respond positively — to changes in water quality 

and habitat based only on “high purity” taxa (i.e., taxa that are consistently assigned the same 

response direction) and “high reliability” taxa (i.e., taxa that consistently achieve a p-value < 

0.05).  

 

Because many of the relationships between conservation practice density and water quality, 

habitat, and biota were not significant and depended on agricultural land use, we further explored 

these relationships using ANOVA. First, we assigned each site to 1 of 5 bins: high subbasin 

agricultural land use, low CP density (n = 4); high agriculture, high CP (n = 9); medium 

agriculture, high CP (n = 9); medium agriculture, low CP (n = 3); or low agriculture, low CP (n = 

6). We then built ANOVA models with the response variables TN, TSS, E. coli, bank stability, 

embeddedness, VSCI, proportion EPT, and EPT taxa and site classification as the treatment. 

Finally, we tested for differences between categories using Tukey’s test.  

 

Results:  

The instream data collected were quite variable across sites (Table 3.4.2). Most collections (n = 

88) were dominated by pebble substrates (i.e., 5 mm ≤ D50 ≤ 64 mm); however, a single 

collection was dominated by bedrock (i.e., D50 < 1 mm and substrate predominately bedrock) 

and 53 collections were dominated by cobble (i.e., 65 mm ≤ D50 ≤ 256 mm). Measured 

embeddedness ranged from 8.20–48.34% (mean ± standard deviation: 23.56 ± 8.61%) and 

visually estimated embeddedness ranged from 9–18 (12.60 ± 2.41). Visually estimated bank 

stability ranged from 4–18 (13.79 ± 3.53). Total suspended solids ranged from <0.10–44.80 

mg/L (4.23 ± 5.60 mg/L), TN ranged from <0.08–4.65 mg/L (1.27 ± 0.77 mg/L), and TP ranged 

from <0–0.01 mg/L (0.03 ± 0.04 mg/L). Most total coliform bacteria samples had values greater 

than the laboratory could measure (n = 84); however, measurable values ranged from 435.2–

2,416.17 (1596.28 ± 632.95 most probable number/100 ml). Measurable values for E. coli (n = 

124) ranged from 6.30–2,416.17 (439.43 ± 546.19 most probable number/100 ml). The VSCI for 

each site ranged from 34.05–81.04 (65.10 ± 9.15). The proportion of individuals classified as 

EPT taxa ranged from 0–0.87 (0.37 ± 0.20). 
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Table 3.4.2. Results of the instream data collection. ID = site identification code, Date = date the data were collected, Temp = water 

temperature (°C), DO = dissolved oxygen (mg/L), SPC = specific conductivity (µS/cm), Q = discharge (m3/sec), D50 = median 

substrate size (mm), Emb = embeddedness (%), TSS = total suspended solids (mg/L), Coli = total fecal coliform bacteria (most 

probable number/100 ml), Ecoli = total E. coli bacteria (most probable number/100 ml), TN = total nitrogen (mg/L), TP = total 

phosphorus (mg/L), Emb2 = visually estimated embeddedness, Stab = bank stability, VSCI = Virginia Stream Condition Index, EPT = 

proportion of macroinvertebrate individuals classified as Ephemeroptera, Plecoptera, or Trichoptera minus individuals in the family 

Hydropsychidae.  

ID Date Temp DO SPC pH Q D50 Emb TSS Coli Ecoli TN TP Emb2 Stab VSCI EPT 

BC-MF584-A20 24 Oct 20 15.6 8.47 267.2 8.9 0.023 38 21.84 10.04 >2419.2 1553.07 1.78 0.05 12 14 54.65 0.14 

BC-MF584-A21 22 Oct 21 13.3 9.41 302.1 7.97 0.017 78 26.63 40.31 1011.10 137.40 1.97 0.12 12 14 59.74 0.16 

BC-MF584-SP21 15 May 21 9.6 10.53 264.5 8.23 0.020 80 26.62 10.38 1011.10 524.70 1.55 0.05 12 14 52.80 0.09 

BC-MF584-SP22 01 May 22 14 9.54 251 7.93 0.028 30 37.60 13.83 >2419.2 727.00 1.53 0.05 12 14 66.83 0.25 

BC-UC678-A20 24 Oct 20 15.7 9 333.2 8.92 0.025 1 12.59 2.40 >2419.2 2419.17 1.54 0.02 15 10 68.26 0.20 

BC-UC678-A21 22 Oct 21 14.1 9.44 374.2 8.29 0.008 90 19.97 4.49 >2419.2 2419.17 1.50 0.03 15 10 50.62 0.13 

BC-UC678-SP21 15 May 21 12.3 9.96 296.3 8.28 0.031 30 21.26 2.30 >2419.2 1413.60 1.37 0.01 15 10 68.66 0.37 

BC-UC678-SP22 01 May 22 13.3 10.48 295 7.95 0.026 40 20.75 3.31 >2419.2 866.40 1.29 0.01 15 10 70.69 0.44 

BC-WB666-A20 25 Oct 20 15 9.52 311.6 8.79 0.022 35 15.79 3.46 2419.2 1046.2 1.24 BD 12 16 53.60 0.12 

BC-WB666-A21 22 Oct 21 13.3 9.58 339 8.1 0.013 20 27.31 4.25 >2419.2 866.40 1.27 0.01 12 16 54.38 0.11 

BC-WB666-SP21 15 May 21 11.7 9.98 323.9 8.18 0.022 58 19.60 3.65 >2419.2 161.60 1.05 0.01 12 16 49.91 0.23 

BC-WB666-SP22 01 May 22 13.2 10.1 317.9 7.86 0.016 60 21.44 4.62 >2419.2 579.40 1.05 0.01 12 16 49.37 0.07 

BM-NF734-A20 24 Oct 20 17.2 9.73 365.9 8.74 0.021 22 14.25 1.89 >2419.2 365.40 1.13 0.02 10 16 51.50 0.18 

BM-NF734-A21 22 Oct 21 15.1 9.82 400 8.12 0.003 50 11.77 13.96 >2419.2 228.20 1.18 0.07 10 16 64.79 0.14 

BM-NF734-SP21 15 May 21 13.7 11.06 371.4 8.15 0.007 25 18.73 4.22 960.60 344.40 0.70 0.02 10 16 59.76 0.21 

BM-NF734-SP22 01 May 22 17.7 14.09 341.3 8.21 0.006 30 22.64 2.50 1011.10 360.90 1.23 0.03 10 16 65.56 0.28 

BM-NF832-A20 08 Nov 20 11.1 8.72 395.5 8.75 0.041 90 14.70 4.05 >2419.2 >2419.2 1.82 0.02 13 4 63.95 0.14 

BM-NF832-A21 22 Oct 21 15.4 9.28 421.8 8.43 0.008 110 23.80 4.79 1011.10 1011.10 1.91 0.06 13 4 59.47 0.11 

BM-NF832-SP21 15 May 21 19.3 10.94 372.7 8.56 0.015 70 31.09 3.08 >2419.2 >2419.2 0.99 0.02 13 4 51.80 0.24 

BM-NF832-SP22 01 May 22 19.7 10.68 345.6 8.37 0.013 70 16.05 1.56 >2419.2 >2419.2 0.98 0.03 13 4 58.37 0.15 

BM-SF886-A20 24 Oct 20 15.5 9.57 305 8.75 0.008 28 12.47 2.17 >2419.2 365.40 0.30 0.02 11 13 56.68 0.21 

BM-SF886-A21 22 Oct 21 13.8 9.15 345.9 8.09 0.002 40 17.08 3.65 >2419.2 435.20 0.80 0.04 11 13 56.46 0.20 

BM-SF886-SP21 15 May 21 14.8 11.3 263.7 8.44 0.015 35 22.82 4.54 2419.17 193.50 0.22 0.02 11 13 67.13 0.34 
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BM-SF886-SP22 01 May 22 17.9 12.42 301.4 8.21 0.008 30 36.28 3.39 >2419.2 579.40 0.54 0.04 11 13 59.30 0.34 

CC-AB29-A19 10 Nov 19 12.8 9.19 238.6 8.06 0.065 - - 0.30 >2419.2 >2419.2 1.21 0.00 16 14 56.27 0.24 

CC-AB29-A20 01 Nov 20 13.2 8.73 306.8 8.08 0.107 50 12.44 0.86 >2419.2 488.40 1.95 0.04 16 14 53.48 0.12 

CC-AB29-A21 23 Oct 21 13.3 9.39 328.8 7.38 0.053 40 35.38 0.67 920.80 77.10 1.17 0.01 16 14 48.98 0.12 

CC-AB29-SP20 16 May 20 14 9.49 266.1 8.16 0.206 70 12.74 - - - - - 16 14 61.39 0.66 

CC-AB29-SP21 16 May 21 13 9.05 308.4 7.56 0.120 65 21.55 0.50 1299.65 58.10 1.23 0.01 16 14 64.94 0.40 

CC-AB29-SP22 02 May 22 13.7 10.44 289.2 7.3 0.048 40 32.75 0.30 1413.60 159.70 1.29 BD 16 14 49.97 0.50 

CC-CC05-A19 10 Nov 19 11.6 9.03 333 8.11 0.055 - - 5.55 2419.17 77.10 2.18 0.02 12 12 57.26 0.37 

CC-CC05-A20 31 Oct 20 13 9.15 311.5 8.26 0.244 27 24.47 6.46 >2419.2 461.1 2.25 0.01 12 12 58.97 0.23 

CC-CC05-A21 22 Oct 21 13.6 8.76 349.4 7.84 0.027 15 43.51 4.05 >2419.2 >2419.2 2.48 0.04 12 12 61.63 0.30 

CC-CC05-SP20 16 May 20 13.4 9.7 271.2 8.38 0.191 30 16.55 - - - - - 12 12 61.76 0.21 

CC-CC05-SP21 15 May 21 14.4 10.14 336.4 8.02 0.078 20 20.92 3.38 >2419.2 1413.60 1.70 0.01 12 12 64.91 0.55 

CC-CC05-SP22 01 May 22 13 10.4 242.2 7.71 0.077 25 30.17 1.17 1011.10 61.30 1.62 BD 12 12 73.80 0.58 

CC-CC44-A19 10 Nov 19 12.2 8.78 311 8.76 0.041 - - 1.26 >2419.2 686.7 1.46 0.01 10 18 67.68 0.24 

CC-CC44-A20 01 Nov 20 13.9 9.61 314.8 8.98 0.142 63 19.68 2.84 >2419.2 461.1 1.93 0.03 10 18 71.86 0.24 

CC-CC44-A21 23 Oct 21 13.9 9.14 333.2 8.21 0.029 50 28.80 0.92 >2419.2 22.30 1.24 0.01 10 18 75.57 0.42 

CC-CC44-SP20 15 May 20 16 8.75 256.8 9.01 0.190 23 37.61 - - - - - 10 18 69.59 0.57 

CC-CC44-SP21 16 May 21 13.4 10.19 318.7 8.39 0.099 45 23.72 3.33 2419.17 32.30 1.53 0.01 10 18 68.71 0.65 

CC-CC44-SP22 02 May 22 15.7 10.92 320.2 8.12 0.087 60 31.23 2.04 1203.31 272.30 1.40 BD 10 18 72.92 0.47 

CC-FB75-A19 17 Nov 19 5.5 12.32 378 8.57 0.003 - - 0.41 1732.87 6.30 1.47 0.02 12 18 69.50 0.32 

CC-FB75-A20 01 Nov 20 11.2 10 325.3 8.95 0.017 55 13.05 1.88 >2419.2 148.3 0.92 BD 12 18 48.11 0.07 

CC-FB75-A21 23 Oct 21 12.1 7 400.5 7.93 0.001 30 12.42 2.03 >2419.2 14.30 0.95 0.01 12 18 50.56 0.10 

CC-FB75-SP20 15 May 20 12.5 8.96 319.8 8.73 0.012 40 12.29 - - - - - 12 18 60.62 0.29 

CC-FB75-SP21 16 May 21 14.4 8.83 350.1 8.19 0.006 40 8.20 2.29 1011.10 42.80 0.66 0.01 12 18 47.70 0.18 

CC-FB75-SP22 02 May 22 13.2 9.77 349.7 7.89 0.011 43 22.92 2.50 2419.17 49.60 0.42 0.01 12 18 58.22 0.23 

CC-GC24-A19 10 Nov 19 12.5 10.2 314.1 8.76 0.030 - - 1.73 >2419.2 727 1.54 0.01 9 17 63.22 0.12 

CC-GC24-A20 31 Oct 20 13.5 9.51 301.7 8.73 0.107 16 16.57 11.44 >2419.2 344.8 2.05 0.07 9 17 56.38 0.08 

CC-GC24-A21 24 Oct 21 12.6 9.41 337.7 8.05 0.015 20 18.37 1.75 >2419.2 344.80 1.33 0.02 9 17 60.92 0.24 

CC-GC24-SP20 16 May 20 16.1 9.28 271.6 8.78 0.120 20 9.34 - - - - - 9 17 61.02 0.21 

CC-GC24-SP21 15 May 21 16.9 9.26 314.6 8.38 0.045 15 21.98 1.64 >2419.2 313.00 1.51 0.01 9 17 64.83 0.33 

CC-GC24-SP22 02 May 22 19 9.72 292.1 8.16 0.047 15 31.92 3.47 >2419.2 1732.87 1.42 0.02 9 17 72.90 0.44 
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CC-JB25-A19 17 Nov 19 13 9.54 310.6 8.18 0.056 - - 0.11 435.20 6.30 1.83 0.01 10 17 46.01 0.13 

CC-JB25-A20 08 Nov 20 13 9.48 314.9 8.07 0.087 65 20.42 0.57 920.80 53.80 2.34 0.01 10 17 55.42 0.16 

CC-JB25-A21 23 Oct 21 13 9.4 328.5 7.33 0.049 30 48.34 0.62 2419.17 64.40 1.79 BD 10 17 55.00 0.16 

CC-JB25-SP20 15 May 20 13.2 9.43 271.5 8.18 0.242 30 38.68 - - - - - 10 17 55.42 0.21 

CC-JB25-SP21 16 May 21 12.9 9.37 329.9 7.58 0.136 55 34.41 BD 613.10 228.20 2.01 0.01 10 17 68.09 0.38 

CC-JB25-SP22 02 May 22 13.2 10.6 324.7 7.39 0.139 50 39.93 0.10 960.60 313.00 2.39 BD 10 17 74.60 0.61 

CC-LC16-A19 10 Nov 19 7.2 12.08 396 8.86 0.060 - - 2.10 1986.3 109.5 1.89 0.03 13 14 56.96 0.24 

CC-LC16-A20 31 Oct 20 13.1 10.45 354.9 8.91 0.254 60 9.50 7.83 >2419.2 344.4 2.42 0.02 13 14 73.63 0.43 

CC-LC16-A21 24 Oct 21 17.4 7.39 357.7 8.32 0.038 50 30.48 9.11 >2419.2 980.40 2.39 0.04 13 14 61.02 0.14 

CC-LC16-SP20 16 May 20 22.7 9.07 287.8 9.28 0.132 65 16.97 - - - - - 13 14 68.23 0.24 

CC-LC16-SP21 17 May 21 16.3 10.19 369.8 8.56 0.055 145 12.00 5.74 >2419.2 >2419.2 2.23 0.02 13 14 64.11 0.40 

CC-LC16-SP22 03 May 22 23.4 10.51 373 8.24 0.042 80 22.06 1.90 >2419.2 378.40 1.89 0.02 13 14 47.06 0.26 

CC-MC14-A19 10 Nov 19 11.2 10.38 307.5 8.6 0.016 - - 44.80 >2419.2 >2419.2 2.91 0.33 13 16 34.05 0.06 

CC-MC14-A20 31 Oct 20 14.4 9.58 256 8.56 0.057 36 28.52 6.34 >2419.2 396.8 1.80 0.03 13 16 67.96 0.31 

CC-MC14-A21 24 Oct 21 13.2 9.19 334.8 8.03 0.012 11 39.89 0.10 >2419.2 1203.31 1.38 0.02 13 16 76.54 0.48 

CC-MC14-SP20 15 May 20 17.6 9.28 219.8 8.99 0.047 28 35.86 - - - - - 13 16 63.68 0.70 

CC-MC14-SP21 16 May 21 12.4 9.23 304.2 8.12 0.023 45 31.63 10.25 >2419.2 >2419.2 1.83 0.05 13 16 78.44 0.61 

CC-MC14-SP22 02 May 22 17.8 9.08 295.3 8.01 0.017 38 21.98 3.27 >2419.2 579.40 1.35 0.02 13 16 67.86 0.87 

CC-MC22-A19 10 Nov 19 8.3 11.5 285 8.73 0.101 - - 1.60 >2419.2 95.8 1.07 0.01 12 9 63.80 0.13 

CC-MC22-A20 31 Oct 20 14.1 9.41 264.8 8.84 0.279 73 20.82 5.42 1011.1 601.5 2.37 BD 12 9 73.54 0.15 

CC-MC22-A21 24 Oct 21 14.3 9.7 302.6 8.13 0.057 58 24.68 6.67 1011.10 39.30 0.95 0.01 12 9 71.47 0.49 

CC-MC22-SP20 16 May 20 15.2 9.8 210 8.98 0.213 60 27.02 - - - - - 12 9 72.80 0.34 

CC-MC22-SP21 16 May 21 12.7 9.37 308.2 8.24 0.131 80 19.06 4.07 >2419.2 78.00 1.39 0.01 12 9 75.12 0.41 

CC-MC22-SP22 03 May 22 17.4 10.78 297.6 7.97 0.072 40 32.84 4.63 640.50 51.20 1.06 BD 12 9 83.63 0.70 

CC-OC56-A19 17 Nov 19 8.8 10.7 298.5 8.57 0.057 - - 1.20 >2419.2 1119.85 0.82 0.01 11 14 70.58 0.41 

CC-OC56-A20 01 Nov 20 14.2 9.53 293.3 8.9 0.127 70 29.20 5.03 >2419.2 161.6 1.32 BD 11 14 70.56 0.27 

CC-OC56-A21 23 Oct 21 13.8 9.43 322.2 8.16 0.078 110 35.97 2.25 2419.17 63.80 0.67 BD 11 14 78.75 0.50 

CC-OC56-SP20 15 May 20 15.5 7.49 243.8 8.84 0.193 12 31.25 - - - - - 11 14 73.21 0.75 

CC-OC56-SP21 16 May 21 15.1 9.54 296.6 8.41 0.108 125 25.44 4.18 >2419.2 325.50 0.88 0.01 11 14 67.37 0.56 

CC-OC56-SP22 02 May 22 16 10.23 297.7 8.18 0.111 85 21.75 2.54 2419.17 70.30 0.76 BD 11 14 81.86 0.68 

CC-PB64-A19 17 Nov 19 7.2 11 314.7 8.87 0.005 - - 2.18 1553.07 45.70 1.22 0.02 11 8 61.28 0.35 
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CC-PB64-A20 01 Nov 20 13.1 9.88 298.1 9.05 0.025 60 14.12 4.23 >2419.2 107.1 2.00 BD 11 8 56.85 0.15 

CC-PB64-A21 23 Oct 21 12.3 8.59 332.1 8.27 0.001 50 23.17 5.19 >2419.2 63.10 1.00 0.02 11 8 66.74 0.26 

CC-PB64-SP20 15 May 20 14.1 7.98 256.7 9.97 0.013 20 27.15 - - - - - 11 8 67.26 0.58 

CC-PB64-SP21 16 May 21 14.7 8.67 293.1 8.37 0.009 50 10.66 3.43 >2419.2 43.50 1.15 0.01 11 8 60.72 0.68 

CC-PB64-SP22 02 May 22 13.1 10.69 299.7 8.14 0.012 30 22.82 1.41 1011.10 107.60 0.97 0.02 11 8 67.86 0.45 

CC-PC65-A19 10 Nov 19 9.8 9.88 298.7 8.76 0.020 - - 1.74 >2419.2 55.6 0.71 0.01 12 15 63.77 0.17 

CC-PC65-A20 01 Nov 20 12.1 10.07 311.2 9.04 0.074 35 19.95 2.86 >2419.2 80.90 1.32 BD 12 15 69.04 0.17 

CC-PC67-A21 23 Oct 21 11.8 8.78 309.5 8.26 0.017 65 38.55 1.17 >2419.2 1732.87 0.52 0.02 12 15 71.06 0.61 

CC-PC67-SP20 15 May 20 13.7 8.64 283.6 9 0.071 15 18.00 - - - - - 12 15 70.44 0.76 

CC-PC67-SP21 16 May 21 14.6 9.47 326.5 8.51 0.039 70 34.23 2.45 1986.28 61.30 0.85 0.01 12 15 68.38 0.60 

CC-PC67-SP22 02 May 22 13 10.63 333.1 8.24 0.028 50 29.36 1.61 >2419.2 101.90 0.72 BD 12 15 65.38 0.39 

CC-SB58-A19 17 Nov 19 10.4 10.29 310 8.81 0.014 - - 1.03 1986.28 11.00 0.78 0.01 16 16 64.94 0.15 

CC-SB58-A20 01 Nov 20 13.8 9.35 97.1 8.96 0.070 95 20.25 4.66 2419.2 104.6 1.24 BD 16 16 71.67 0.17 

CC-SB58-A21 23 Oct 21 13.2 8.81 328.1 8.33 0.014 120 33.49 2.32 2419.17 39.90 0.69 BD 16 16 59.23 0.28 

CC-SB58-SP20 15 May 20 14.3 8.01 272.1 8.86 0.039 30 34.14 - - - - - 16 16 65.74 0.61 

CC-SB58-SP21 16 May 21 13.3 9.35 237.7 8.39 0.015 113 29.99 3.31 >2419.2 165.80 0.81 0.01 16 16 72.41 0.54 

CC-SB58-SP22 02 May 22 14 10.83 324.1 8.19 0.012 60 29.08 1.46 829.70 12.20 0.73 BD 16 16 74.32 0.49 

CC-UC03-A19 10 Nov 19 12.4 9.94 340 8.34 0.026 - - 1.20 >2419.2 61.7 2.15 0.01 11 16 69.08 0.21 

CC-UC03-A20 31 Oct 20 12.4 9.5 325.1 8.14 0.089 15 9.25 4.16 >2419.2 166.9 2.39 0.03 11 16 61.54 0.19 

CC-UC03-A21 22 Oct 21 13.4 9.01 352 7.77 0.016 15 18.72 4.26 >2419.2 65.00 1.70 0.01 11 16 46.64 0.03 

CC-UC03-SP20 16 May 20 12.9 9.39 280 8.53 0.061 20 12.08 - - - - - 11 16 62.82 0.55 

CC-UC03-SP21 15 May 21 14.8 9.24 339.1 7.99 0.036 17 10.87 3.15 >2419.2 172.20 1.96 0.01 11 16 71.88 0.34 

CC-UC03-SP22 01 May 22 13.7 10.86 269.1 7.55 0.020 20 24.79 2.01 960.60 222.40 1.90 0.01 11 16 75.32 0.32 

CC-UC15-A19 10 Nov 19 9.7 10.73 396.8 8.75 0.013 - - 2.29 1553.1 108.6 3.76 0.04 16 12 62.16 0.19 

CC-UC15-A20 31 Oct 20 14.5 9.78 363 8.69 0.035 30 22.39 8.51 >2419.2 >2419.2 3.49 0.04 16 12 75.38 0.36 

CC-UC15-A21 24 Oct 21 15.8 6.44 409.8 8.08 0.006 45 21.83 11.38 >2419.2 488.40 2.49 0.06 16 12 71.60 0.38 

CC-UC15-SP20 16 May 20 20 8.6 318.3 8.89 0.041 30 15.88 - - - - - 16 12 65.89 0.44 

CC-UC15-SP21 17 May 21 18.5 9.89 372.7 8.54 0.031 30 20.95 2.47 >2419.2 1732.87 2.63 0.02 16 12 73.99 0.50 

CC-UC15-SP22 03 May 22 22.4 9.11 386.9 8.07 0.013 30 23.60 3.89 >2419.2 571.70 4.65 0.05 16 12 69.20 0.41 

LC-CB576-A20 23 Oct 20 13.9 9.68 343.6 8.49 0.043 93 31.47 2.89 >2419.2 1203.31 1.15 0.02 16 6 72.52 0.48 

LC-CB576-A21 30 Oct 21 13.1 8.61 340.2 7.76 0.062 130 17.30 8.54 960.60 344.40 1.40 0.02 16 6 67.80 0.38 
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LC-CB576-SP21 22 May 21 14 10.6 337.3 7.97 0.038 130 30.94 1.98 >2419.2 1203.31 1.30 0.03 16 6 74.05 0.70 

LC-CB576-SP22 08 May 22 12.4 11.11 297.1 7.52 0.137 125 15.78 3.07 >2419.2 >2419.2 1.06 0.02 16 6 80.96 0.77 

LC-UC559-A20 08 Nov 20 16.9 7.96 337 9 0.007 50 22.42 1.21 >2419.2 >2419.2 1.21 0.02 10 16 50.88 0.14 

LC-UC559-A21 30 Oct 21 12.5 9.3 281.3 8.29 0.009 70 33.24 0.60 >2419.2 >2419.2 0.68 0.04 10 16 37.96 0.00 

LC-UC559-SP21 22 May 21 23.9 5.62 375.3 8.03 0.006 50 35.26 4.97 >2419.2 2419.17 0.87 0.03 10 16 63.85 0.23 

LC-UC559-SP22 08 May 22 15.4 11.38 240.8 8.21 0.015 60 33.15 1.44 >2419.2 >2419.2 0.57 0.02 10 16 45.67 0.33 

LC-UC754-A20 23 Oct 20 - 8.54 417 8.75 0.006 8 27.57 4.94 816.40 24.30 0.43 0.03 17 14 69.45 0.29 

LC-UC754-A21 30 Oct 21 12.6 8.78 374.5 8.05 0.018 80 11.62 7.60 >2419.2 1413.60 1.28 0.04 17 14 73.24 0.43 

LC-UC754-SP21 22 May 21 20.2 6.58 345.1 8.31 0.025 40 14.64 6.76 >2419.2 >2419.2 0.84 0.03 17 14 74.71 0.21 

LC-UC754-SP22 08 May 22 16 10.42 306.8 8.02 0.015 60 9.87 5.31 >2419.2 410.60 0.48 0.01 17 14 75.47 0.59 

LC-WO422-A20 23 Oct 20 11.9 9.5 329 8.82 0.011 60 14.94 2.82 >2419.2 325.50 1.61 0.11 11 8 74.57 0.37 

LC-WO422-A21 30 Oct 21 12.5 8.94 401.8 8.27 0.066 110 24.96 5.02 >2419.2 517.20 1.55 0.04 11 8 67.36 0.83 

LC-WO422-SP21 22 May 21 14.2 9.92 337.7 8.42 0.018 85 20.37 4.38 >2419.2 1299.65 1.40 0.02 11 8 63.77 0.54 

LC-WO422-SP22 08 May 22 11.6 11.13 313.2 7.97 0.113 103 23.40 10.05 >2419.2 >2419.2 1.00 0.03 11 8 68.43 0.58 

TC-BC868-A20 08 Nov 20 12.5 10.04 16.4 7.69 0.335 138 10.52 0.20 488.40 11.00 0.08 0.01 18 12 81.04 0.69 

TC-BC868-A21 31 Oct 21 11.4 9.72 12.5 5.81 2.095 140 23.70 3.39 1011.10 133.30 BD BD 18 12 75.59 0.52 

TC-BC868-SP21 23 May 21 14.9 9.28 19 7.24 0.214 130 15.97 0.37 1119.85 191.80 0.28 BD 18 12 67.25 0.47 

TC-BC868-SP22 12 May 22 13.4 11.3 14.8 6.19 0.853 150 27.54 0.85 1203.31 62.40 0.25 BD 18 12 75.15 0.61 

TC-EF639-A20 24 Oct 20 14.3 8.36 157.3 8.46 0.056 70 11.24 0.80 2419.17 37.90 0.19 0.16 16 11 75.33 0.66 

TC-EF639-A21 31 Oct 21 13.5 8.77 212 7.79 0.110 55 15.19 1.04 2419.17 116.20 0.41 0.01 16 11 83.22 0.72 

TC-EF639-SP21 22 May 21 19.5 9.18 155.8 8.1 0.059 73 36.21 1.23 >2419.2 770.10 0.26 0.01 16 11 69.21 0.43 

TC-EF639-SP22 08 May 22 13.9 10.86 120.8 7.54 0.487 80 20.62 4.56 >2419.2 1119.85 0.35 0.02 16 11 66.40 0.55 

TC-RM582-A20 23 Oct 20 14.8 8.79 201.9 8.71 0.028 30 23.66 3.47 >2419.2 1553.07 0.20 0.01 10 18 77.22 0.43 

TC-RM582-A21 30 Oct 21 12.2 9.21 247.9 7.96 0.047 110 31.93 6.16 >2419.2 83.30 0.42 0.03 10 18 66.40 0.31 

TC-RM582-SP21 22 May 21 17.2 8.92 173.6 8.1 0.021 120 37.04 5.67 >2419.2 17.10 0.35 0.02 10 18 71.23 0.56 

TC-RM582-SP22 08 May 22 - 11.14 160.9 7.74 0.230 100 33.55 8.75 1011.10 304.40 0.34 0.03 10 18 77.13 0.59 

TC-SH803-A20 08 Nov 20 13.7 8.3 27.8 7.77 0.069 43 26.67 1.19 1732.87 90.60 0.14 0.01 10 15 73.06 0.39 

TC-SH803-A21 31 Oct 21 12.3 9.01 30.1 6.51 0.130 40 35.49 1.82 960.60 231.00 BD BD 10 15 61.86 0.41 

TC-SH803-SP21 23 May 21 14.7 7.95 26.3 7.33 0.025 70 22.70 0.65 >2419.2 235.90 0.29 0.01 10 15 60.03 0.31 

TC-SH803-SP22 12 May 22 13.2 10.82 20.1 6.83 0.117 68 32.28 0.69 1986.28 166.40 0.18 BD 10 15 76.32 0.62 

TC-UC792-A20 24 Oct 20 15 8.55 133.8 8.5 0.009 160 23.17 1.96 2419.17 7.40 0.80 0.03 15 18 68.29 0.51 
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“-” = samples/data that were not collected 

“BD” = below detection level. 

TC-UC792-A21 31 Oct 21 12.2 10.38 124.7 7.55 0.101 190 34.95 16.06 691.00 178.50 1.08 0.04 15 18 68.81 0.54 

TC-UC792-SP21 22 May 21 16.2 8.55 114.7 7.82 0.008 180 25.45 7.16 >2419.2 8.40 0.56 0.04 15 18 68.22 0.46 

TC-UC792-SP22 08 May 22 12.1 11.82 100 7.44 0.133 180 18.65 11.57 2419.17 228.20 0.64 0.04 15 18 64.71 0.40 

TC-WF1719-A20 08 Nov 20 13.9 10.31 38.5 7.82 0.317 73 13.63 1.01 1413.60 344.80 0.18 0.01 13 16 70.35 0.34 

TC-WF1719-A21 31 Oct 21 13.4 10.04 55.1 7.28 0.339 100 13.29 2.14 >2419.2 816.40 0.30 0.01 13 16 63.13 0.44 

TC-WF1719-SP21 22 May 21 19.9 7.82 52 8.09 0.172 70 19.34 0.76 >2419.2 204.60 0.43 BD 13 16 66.70 0.49 

TC-WF1719-SP22 12 May 22 15 11.29 36.3 6.52 0.498 80 19.45 2.30 1986.28 235.90 0.23 BD 13 16 70.33 0.54 
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We received responses about 398 CPs from 84 landowners that could be used to characterize 

continued use of CPs. We found that 84%, 94%, 94% of fencing, watering, and pasture 

management CPs were reported to still be in use. In contrast, only about 74% of riparian buffers 

were reported to still be in use.  

 

Counterintuitive results from the mixed-effects regression model revealed that it would be 

helpful to explore the indirect relationships between CPs and biotic responses (e.g., how CPs 

influence water quality and how water quality influences biotic responses). The VSCI and EPT 

responded similarly to the predictor variables, but EPT had stronger relationships, so we only 

discuss the EPT results (Table 3.4.3). The regression model explained 29% of the variation in 

EPT. Nitrogen was the only water quality variable related to EPT, and that correlation was 

negative. Bank stability was also negatively related to EPT, which is opposite of the relationship 

we would expect. Interestingly, CPs showed a quadratic relationship with proportion EPT, 

wherein CPs were positively correlated with biotic health at very low levels of CP 

implementation (0 – ≈0.15 CPs/ha) but a negative relationship occurred at higher levels of 

implementation (Figure 3.4.1). To further explore how CPs influence stream health, we built the 

models described below. 

 

 

Table 3.4.3. Results of a mixed-effects linear regression model used to predict the proportion of 

macroinvertebrate individuals collected at a site that were classified as Ephemeroptera, 

Plecoptera, or Trichoptera minus individuals in the family Hydropsychidae. Watershed, season, 

and site were included as random effects. See task 3.4 methods and table 3.4.1 for the 

descriptions of each parameter. 

Parameter Estimate ± SE p-value 

Intercept 0.40 ± 0.06 < 0.01 

CP density  0.03 ± 0.03 0.40 

CP density2 -0.06 ± 0.02 < 0.01 

Slope 0.03 ± 0.02 0.17 

Measured embeddedness <0.01 ± 0.01 0.94 

Visual embeddedness 0.01 ± 0.02 0.47 

D50 0.01 ± 0.02 0.51 

Bank stability -0.03 ± 0.02 0.08 

Total nitrogen -0.05 ± 0.02 0.03 

Total suspended solids -0.01 ± 0.02 0.35 

Total phosphorus <0.01 ± 0.02 0.66 

E. coli -0.01 ± 0.02 0.49 

Fecal coliform <-0.01 ± 0.01 0.75 

SE = standard error 
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Figure 3.4.1. Relationship between number of conservation practices (CPs) per hectare and 

proportion of macroinvertebrate individuals collected at a site that were classified as 

Ephemeroptera, Plecoptera, or Trichoptera minus individuals in the family Hydropsychidae 

(EPT). The solid line depicts the predicted relationship and the dashed lines are 95% confidence 

intervals. The relationship was derived from a mixed-effects linear regression model (Table 

3.4.3) where all other variables were held at their means. Watershed, season, and site were 

included as random effects.  

 

Agricultural land use negatively affected water quality and the macroinvertebrate assemblage, 

but there was no direct relationship between agricultural land use and habitat. The simple linear 

regression models indicated that agricultural land use was positively related to TN (p < 0.01) and 

E. coli (p < 0.01) but not TSS (p = 0.41), embeddedness (p = 0.74), or bank stability (p = 0.38). 
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Slope was negatively related to agriculture (p < 0.01), and CPs were positively related with 

agriculture (p = 0.08). Agricultural land use had a negative relationship with proportion EPT (p < 

0.01), VSCI (p = 0.09), and number of EPT taxa (p < 0.01).  

 

 
Figure 3.4.2. A simple linear model showed that increasing agricultural land use in 31 

watersheds led to increased total nitrogen.  
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Figure 3.4.3. A simple linear model showed that increasing agricultural land use in 31 

watersheds led to decreased proportions of macroinvertebrate individuals collected at a site that 

were classified as Ephemeroptera, Plecoptera, or Trichoptera minus individuals in the family 

Hydropsychidae (EPT).  

 

 

We found that CPs appear to improve or stabilize several water quality and physical habitat 

measures above certain thresholds of CP density (Figures 3.4.4–3.4.7, Table 3.4.4), but apparent 

effects of CPs varied widely across physicochemical factors and models, and no model 

accounted for more than 21% of the variance in a physicochemical factor. The linear plateau 

model explained the greatest amount of variation (pseudo-R2 = 0.21) in the response of nitrogen 

to CP density and showed a significant change in slope after the breakpoint (breakpoint = 0.30, 

p-value = 0.09; Figure 3.4.4). The exponential decay model explained the most variation in the 

relationship between CP density and TSS (pseudo-R2 = 0.05), E. coli bacteria (pseudo-R2 = 

0.07), and D50 (pseudo-R2 = 0.07) but the coefficients for the exponents were not statistically 

significant (Table 3.4.4). Despite poor predictive power of the exponential decay models, higher 

CP density visually appeared to be associated with lower values of TSS (Figure 3.4.5), E. coli 

bacteria (Figure 3.4.6), and D50. Although we could not calculate R2 for stepwise regression, it 

appeared to best explain the relationship between CPs and bank stability (Figure 3.4.7). When 

CP density was greater than 0.41 CPs/ha, bank stability received an average score of 16.4 and 

when CP density was below that threshold, bank stability received a score of 12.4 on average (p-
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value < 0.01). Our results collectively suggest that increasing CP density leads to improved or 

stabilized water quality and habitat, but outcomes vary greatly among specific sites.  

 

 

 

 
Figure 3.4.4. A linear plateau model showed that total nitrogen in 31 watersheds stops 

increasing after conservation practices (CPs) reach a density (number per hectare) of ≈ 0.1/ha.  
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Figure 3.4.5. Increasing density of conservation practices (CPs) appeared to lead to declines in 

total suspended solids following a pattern of exponential decay. However, the exponential decay 

model only explains 5% of the variation in the relationship between CP density (number per 

hectare) and total suspended solids, and the model coefficients are not statistically significant. 
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Figure 3.4.6. Increasing density of conservation practices (CPs) appears to lead to declines in E. 

coli bacteria following a pattern of exponential decay. However, the exponential decay model 

only explains 6% of the variation in the relationship between CP density (number per hectare) 

and E. coli bacteria, and the model coefficients are not statistically significant. MPN = most 

probable number. 
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Figure 3.4.7. Streambanks were more stable (average score of 16.4) when conservation practice 

(CP) density (number per hectare) was greater than ≈0.17/ha than when CP density was less than 

≈0.17/ha (average score of 12.8).  
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Table 3.4.4. Results of linear, linear plateau, and exponential decay models were used to explain relationships between conservation 

practice density and water quality and habitat descriptors. NA indicates that a model either did not make sense for the data or 

produced an error.  
 Linear   Linear plateau  Exponential decay 

Variable Coefficient p-value R2   Breakpoint p-value pseudo-R2   Coefficient p-value pseudo-R2 

Total nitrogen 0.67 0.09 0.05  0.30 0.09 0.21  NA NA NA 

Total suspended solids -3.07 0.20 0.02  NA NA NA  0.75 0.26 0.05 

E. coli -506.00 0.12 0.05  NA NA NA  1.06 0.26 0.06 

D50 -33.31 0.14 0.04  NA NA NA  0.60 0.15 0.07 

Visual embeddedness -0.90 0.60 -0.20  NA NA NA  0.07 0.60 0 

Bank stability 3.12 0.21 0.02  NA NA NA  NA NA NA 
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We found that the macroinvertebrate community exhibited many threshold responses to changes 

in water quality and habitat. Negative indicator taxa began to decline at values that were often 

much lower than we measured at most sites for total N (Figure 3.4.8), TSS, total P, and E. coli 

bacteria (Table 3.4.5). Positive indicator taxa began to increase at slightly higher values for the 

same parameters (Table 3.4.5). The responses for bank stability, visual embeddedness, and D50 

should be interpreted inversely because higher values for these parameters are desirable (Table 

3.4.5). We urge caution in interpreting the positive responses to E. coli bacteria and visually 

estimated embeddedness. These indicators exhibited wide confidence intervals because we 

observed only two pure and reliable indicator taxa.  

 

Table 3.4.5. The threshold indicator analysis revealed changepoints (cp), or thresholds, at which 

the majority of the macroinvertebrate community responded negatively (-) or positively (+) to 

selected water quality and habitat parameters (i.e., the value of the variable that had the greatest 

sum for individual taxon responses). Also shown are 95% confidence intervals (ci) based on 5th 

and 95th percentiles from 500 bootstrap replicates and the number of pure and reliable taxa (n) 

that responded positively or negatively. See table 3.4.1 for descriptions of each variable.  

Variable cp ci n 

Total nitrogen - 0.65 0.57–1.08 17 

Total nitrogen + 1.07 0.81–1.81 11 

Total suspended solids - 1.04 0.78–3.45 4 

Total suspended solids + 4.72 4.20–8.93 7 

Total phosphorus - 0.02 0.01–0.02 8 

Total phosphorus + 0.02 0.02–0.05 6 

E. coli bacteria - 242.88 67.92–283.66 17 

E. coli bacteria + 245.57 242.88–1790.69 13 

Visual embeddedness - 13 12–13 2 

Visual embeddedness + 12.5 12–17.5 9 

D50 - 30 22.95–80 6 

D50 + 116.5 65–130 16 

Bank stability - 6 5–6 5 

Bank stability + 17.5 16–18 6 
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Figure 3.4.8. Example Threshold Indicator Analysis output for assessing the community 

response to total nitrogen. The top panel represents the estimated changepoints (positive in red; 

negative in blue) with 95% confidence intervals (see values in Table 3.4.5). The middle panel 

displays the probability density of the changepoints across the 500 bootstrap replicates. The 

bottom panel displays the magnitude of change among taxa along the environmental gradient (in 

this example, total nitrogen), where peaks in the values indicate points along the environmental 

gradient that produce large amounts of change in community structure and are the community 

change points. Analogous panels are also available for other variables listed in Table 3.4.5.  
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Comparing categories of CP density and agricultural land use confirmed that increased CP 

density improves some metrics of water quality and habitat, but those improvements did not 

translate into changes in the macroinvertebrate assemblage at high levels of agricultural land use 

(Figure 3.4.9). There were significant differences between sites with low agriculture and low CP 

density and sites with high agriculture and low conservation practice density for TN (p-value = 

0.02), bank stability (p-value = 0.08), and EPT (p-value = 0.01), confirming that agriculture can 

adversely affect water quality, habitat, and biota. In many cases, CPs seemed to improve 

instream conditions but not necessarily by statistically significant amounts. For example, bank 

stability was significantly (p-value = 0.05) better at sites with high agriculture and high CP 

density than at sites with high agriculture and no practices. Further, E. coli and TSS tended to be 

lower at high-agriculture sites with CPs compared to those without CPs, but those relationships 

were not significant. Interestingly, there appeared to higher proportions of EPT at sites with 

medium agriculture and high CP density compared to those with medium agriculture and low CP 

density (p-value = 0.03). 

 

 
Figure 3.4.9. Results of analysis of variance on categories representing gradients in agricultural 

land use and conservation practice (CP) density. Bars represent the mean water quality and 

habitat for each category with 90% confidence intervals. Bars with different letters above them 

indicate statistically significant (p < 0.1) differences in means. No differences were statistically 

significant for E. coli bacteria. EPT = Proportion of individuals collected at each site classified as 

EPT, minus the pollution-tolerant family Hydropsychidae  
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The macroinvertebrate community may not have shown a direct positive response to CP 

installation because improvements in water quality were too small (resulting in non-significant 

relationships). For example, our results demonstrate that macroinvertebrates begin to respond 

negatively at 0.65 mg/L of nitrogen but most sites exceed that value. In fact, many of the water 

quality and habitat parameters exceed the thresholds at which the macroinvertebrate community 

responds negatively. Perhaps more time (Meals et al. 2010, Hamilton 2012) or a greater number 

of CPs (or both) in areas contributing the greatest nutrient yields is needed to observe biotic 

responses to CPs.  

 

Task 3.5: 

Caveat:  

We omitted task 3.5 because the proposed database (task 3.2) was not needed to complete the 

core objectives of this study (i.e., understand efficacy of CPs).  

 

 

Task 4: Quantify cost-effectiveness of CP implementation in HUC12s across the upper CPH, 

excluding those encompassing mainstem rivers and those in the Cumberland Plateau coalfields. 

1. Summarize existing data from state and federal agencies, along with newly collected survey 

data, to use as dependent variables in regression analyses to estimate relative cost-

effectiveness of CP implementation across the upper CPH and within the two focal 

watersheds. These analyses will be conducted for all CPs combined, as well as individually 

for the two most common CPs. The depth/extent of these analyses will depend on the 

availability of NRCS data on expected load reductions and cost-share amounts for specific 

CP projects. 
 

Task 4.1 

Caveats: 

We were unable to complete task 4.1 because we could not accurately model the pathways 

through which cattle grazing influences sediment yields to streams and, therefore, were unable to 

develop meaningful, interpretable scenarios.  

 

 

Task 5: Management implications 

 

Collectively, our findings can be used to prioritize watersheds in the CPH for future CP 

implementation. Ideally, such prioritizations would be conducted in collaboration with local and 

regional management agencies. As a starting point for discussion, we suggest that key factors 

used to prioritize watersheds might include sediment load within the watershed, intensity of 

agricultural land use, and current CP implementation levels. Using these factors, we identified 

hypothetical priority locations for CP installation using two different ranking schemes. A 

spreadsheet with agricultural land use intensity and CP implementation levels for all subbasins 

will be archived on the Landscape Partnership portal. 
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Our first hypothetical prioritization aimed to identify locations where CP installation would 

provide the greatest benefit to biota and included the following steps. First, we used Figure 3.1.2 

to identify HUC-12 watersheds that had excessive sediment loads. Ideally, we would use the 

sediment loads to target LSUs and associated stream channels, but we felt that the sediment 

results are only valid when aggregated (See Tasks 2 and 3 Discussion). Then, we selected LSUs 

that had medium amounts of agriculture (i.e., from 25 to 50%) within those HUC-12 watersheds 

because the ANOVA revealed that medium-agricultural sites could benefit most from CP 

installation (in terms of biotic responses, Figure 3.4.9). Lastly, we identified which of the 

selected LSUs already had many CPs (i.e., density > 0.1 CPs/ha) such that installation of several 

additional CPs would exceed density thresholds needed to improve instream conditions to levels 

that would no longer limit biota. Ultimately, we identified 155 LSUs that would benefit most 

from additional CPs in terms of achieving biotic responses (Figure 5.1, Table 5.1).  

 

 
Figure 5.1. Landscape units where installing additional conservation practices could achieve the 

greatest biotic response. See Table 5.1 for the coordinates of the landscape units. 
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Table 5.1. Landscape units where greater density (number/hectare) of conservation practices 

(CPs) could achieve the greatest biotic response. Landscape units with medium percentages of 

agricultural land use (Ag) and CP density greater than 0.1 present the greatest opportunity to 

protect aquatic biota.  

Latitude Longitude Ag CP  HUC-12 

36.64 -82.46 27 0.101 Abrams Creek-North Fork Holston River 

36.65 -82.43 28 0.12 Abrams Creek-North Fork Holston River 

36.65 -82.43 28 0.144 Abrams Creek-North Fork Holston River 

36.63 -82.43 29 0.123 Abrams Creek-North Fork Holston River 

36.63 -82.48 36 0.134 Abrams Creek-North Fork Holston River 

36.65 -82.44 38 0.13 Abrams Creek-North Fork Holston River 

36.64 -82.46 43 0.153 Abrams Creek-North Fork Holston River 

36.91 -82.05 25 0.312 Big Cedar Creek-Clinch River 

36.9 -82.04 28 0.228 Big Cedar Creek-Clinch River 

36.93 -82.06 39 0.181 Big Cedar Creek-Clinch River 

36.93 -82.05 46 0.156 Big Cedar Creek-Clinch River 

36.69 -82.52 25 0.136 Big Moccasin Creek-North Fork Holston River 

36.68 -82.5 27 0.162 Big Moccasin Creek-North Fork Holston River 

36.59 -82.61 29 0.185 Big Moccasin Creek-North Fork Holston River 

36.72 -82.34 31 0.204 Big Moccasin Creek-North Fork Holston River 

36.72 -82.43 42 0.136 Big Moccasin Creek-North Fork Holston River 

36.7 -82.43 43 0.27 Big Moccasin Creek-North Fork Holston River 

36.65 -82.55 43 1.372 Big Moccasin Creek-North Fork Holston River 

36.7 -82.47 44 0.152 Big Moccasin Creek-North Fork Holston River 

36.66 -82.57 45 0.208 Big Moccasin Creek-North Fork Holston River 

36.65 -82.59 45 0.213 Big Moccasin Creek-North Fork Holston River 

36.67 -82.64 25 0.288 Copper Creek 

36.74 -82.56 26 0.192 Copper Creek 

36.76 -82.35 26 0.141 Copper Creek 

36.71 -82.58 26 0.207 Copper Creek 

36.74 -82.43 27 0.117 Copper Creek 

36.74 -82.4 28 0.135 Copper Creek 

36.78 -82.3 29 0.154 Copper Creek 

36.75 -82.53 30 0.108 Copper Creek 

36.69 -82.62 30 0.259 Copper Creek 

36.78 -82.43 31 0.31 Copper Creek 

36.68 -82.64 31 0.353 Copper Creek 

36.72 -82.58 32 0.179 Copper Creek 

36.75 -82.38 33 0.352 Copper Creek 

36.77 -82.46 34 0.443 Copper Creek 

36.73 -82.43 34 0.297 Copper Creek 

36.72 -82.48 34 0.213 Copper Creek 

36.87 -82.21 35 0.61 Copper Creek 

36.83 -82.2 38 0.307 Copper Creek 
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36.7 -82.56 38 0.104 Copper Creek 

36.84 -82.21 39 0.619 Copper Creek 

36.83 -82.21 39 0.182 Copper Creek 

36.73 -82.57 39 0.458 Copper Creek 

36.67 -82.61 39 0.148 Copper Creek 

36.87 -82.2 41 1.781 Copper Creek 

36.8 -82.28 41 0.497 Copper Creek 

36.69 -82.6 41 0.131 Copper Creek 

36.68 -82.66 42 0.644 Copper Creek 

36.72 -82.52 43 0.325 Copper Creek 

36.74 -82.39 45 0.403 Copper Creek 

36.86 -82.21 46 0.168 Copper Creek 

36.85 -82.2 48 0.606 Copper Creek 

36.76 -82.39 49 0.31 Copper Creek 

36.78 -82.42 50 0.486 Copper Creek 

36.73 -82.52 50 0.225 Copper Creek 

36.96 -82.15 27 0.342 Dumps Creek-Clinch River 

36.97 -82.13 31 0.382 Dumps Creek-Clinch River 

37.01 -82.04 34 0.322 Dumps Creek-Clinch River 

37 -82.03 41 0.328 Dumps Creek-Clinch River 

36.87 -82.33 45 0.192 Dumps Creek-Clinch River 

36.86 -82.23 46 0.22 Dumps Creek-Clinch River 

36.96 -82.11 48 0.616 Dumps Creek-Clinch River 

36.93 -82.49 40 0.28 Guest River 

36.98 -81.52 28 0.193 Laurel Creek-North Fork Holston River 

36.9 -81.56 31 0.16 Laurel Creek-North Fork Holston River 

36.91 -81.56 37 0.449 Laurel Creek-North Fork Holston River 

36.97 -81.51 41 0.146 Laurel Creek-North Fork Holston River 

36.96 -81.52 41 0.326 Laurel Creek-North Fork Holston River 

36.93 -81.57 41 0.192 Laurel Creek-North Fork Holston River 

36.94 -81.55 42 0.42 Laurel Creek-North Fork Holston River 

36.89 -81.62 42 0.364 Laurel Creek-North Fork Holston River 

36.93 -81.63 49 0.107 Laurel Creek-North Fork Holston River 

36.63 -81.82 28 0.125 Laurel Creek-South Fork Holston River 

36.63 -81.82 28 0.598 Laurel Creek-South Fork Holston River 

36.53 -81.95 29 0.117 Laurel Creek-South Fork Holston River 

36.64 -81.83 30 0.138 Laurel Creek-South Fork Holston River 

36.64 -81.82 33 0.461 Laurel Creek-South Fork Holston River 

36.54 -81.91 38 0.159 Laurel Creek-South Fork Holston River 

36.55 -81.89 42 0.165 Laurel Creek-South Fork Holston River 

36.55 -81.89 44 0.184 Laurel Creek-South Fork Holston River 

36.55 -81.89 47 0.199 Laurel Creek-South Fork Holston River 

36.55 -81.91 49 0.546 Laurel Creek-South Fork Holston River 

36.82 -81.66 29 0.362 Middle Fork Holston River 

36.8 -81.55 31 0.186 Middle Fork Holston River 
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36.85 -81.6 35 0.387 Middle Fork Holston River 

36.84 -81.62 37 0.23 Middle Fork Holston River 

36.84 -81.61 39 0.193 Middle Fork Holston River 

36.82 -81.58 39 0.37 Middle Fork Holston River 

36.81 -81.55 40 0.289 Middle Fork Holston River 

36.84 -81.59 40 0.263 Middle Fork Holston River 

36.83 -81.59 40 0.44 Middle Fork Holston River 

36.79 -81.56 42 0.232 Middle Fork Holston River 

36.81 -81.6 44 0.531 Middle Fork Holston River 

36.83 -81.68 45 0.307 Middle Fork Holston River 

36.82 -81.6 45 0.101 Middle Fork Holston River 

36.84 -81.6 46 0.218 Middle Fork Holston River 

36.81 -81.62 47 0.122 Middle Fork Holston River 

36.8 -81.66 47 0.264 Middle Fork Holston River 

36.64 -82.89 27 0.94 North Fork Clinch River-Clinch River 

36.57 -83.04 30 0.212 North Fork Clinch River-Clinch River 

36.63 -82.93 35 0.37 North Fork Clinch River-Clinch River 

36.58 -83 41 0.159 North Fork Clinch River-Clinch River 

36.63 -82.91 43 3.044 North Fork Clinch River-Clinch River 

36.68 -82.68 26 0.154 Stony Creek-Clinch River 

36.76 -82.56 30 0.151 Stony Creek-Clinch River 

36.78 -82.58 48 0.125 Stony Creek-Clinch River 

36.77 -82.46 48 0.167 Stony Creek-Clinch River 

37.13 -81.53 26 2.184 Swords Creek-Clinch River 

37.14 -81.55 27 0.399 Swords Creek-Clinch River 

37.13 -81.54 27 0.282 Swords Creek-Clinch River 

37.12 -81.51 28 0.39 Swords Creek-Clinch River 

37.11 -81.52 28 0.133 Swords Creek-Clinch River 

37.18 -81.46 30 0.416 Swords Creek-Clinch River 

37.15 -81.5 30 0.148 Swords Creek-Clinch River 

37.09 -81.84 33 0.147 Swords Creek-Clinch River 

37.17 -81.48 35 0.238 Swords Creek-Clinch River 

37.15 -81.56 38 0.25 Swords Creek-Clinch River 

37.15 -81.55 38 0.159 Swords Creek-Clinch River 

37.2 -81.46 39 0.168 Swords Creek-Clinch River 

37.08 -81.79 39 0.204 Swords Creek-Clinch River 

37.12 -81.54 43 0.142 Swords Creek-Clinch River 

37.18 -81.46 44 0.699 Swords Creek-Clinch River 

37.17 -81.48 45 0.275 Swords Creek-Clinch River 

37.14 -81.57 46 0.101 Swords Creek-Clinch River 

37.11 -81.56 48 0.26 Swords Creek-Clinch River 

36.92 -81.69 32 0.21 Tumbling Creek-North Fork Holston River 

36.88 -81.68 34 0.29 Tumbling Creek-North Fork Holston River 

36.87 -81.71 41 0.287 Tumbling Creek-North Fork Holston River 

36.9 -81.7 47 0.287 Tumbling Creek-North Fork Holston River 
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36.9 -81.7 48 0.165 Tumbling Creek-North Fork Holston River 

36.69 -83.1 25 0.298 Wallen Creek-Powell River 

36.68 -83.26 25 0.146 Wallen Creek-Powell River 

36.66 -83.27 25 0.228 Wallen Creek-Powell River 

36.67 -83.2 25 0.731 Wallen Creek-Powell River 

36.71 -83.09 26 0.183 Wallen Creek-Powell River 

36.69 -83.21 27 0.249 Wallen Creek-Powell River 

36.67 -83.2 27 0.45 Wallen Creek-Powell River 

36.68 -83.15 30 0.256 Wallen Creek-Powell River 

36.64 -83.19 30 0.252 Wallen Creek-Powell River 

36.68 -83.24 30 0.173 Wallen Creek-Powell River 

36.66 -83.22 30 0.121 Wallen Creek-Powell River 

36.73 -83.02 31 0.13 Wallen Creek-Powell River 

36.62 -83.28 31 0.223 Wallen Creek-Powell River 

36.69 -83.19 32 0.117 Wallen Creek-Powell River 

36.71 -83.06 33 0.235 Wallen Creek-Powell River 

36.67 -83.13 38 0.203 Wallen Creek-Powell River 

36.61 -83.33 38 0.132 Wallen Creek-Powell River 

36.65 -83.24 39 0.137 Wallen Creek-Powell River 

36.7 -83.08 41 0.507 Wallen Creek-Powell River 

36.67 -83.2 42 3.704 Wallen Creek-Powell River 

36.63 -83.3 42 0.125 Wallen Creek-Powell River 

36.69 -83.17 43 0.564 Wallen Creek-Powell River 

36.62 -83.28 44 0.129 Wallen Creek-Powell River 

36.63 -83.22 46 0.291 Wallen Creek-Powell River 

36.66 -83.22 50 0.174 Wallen Creek-Powell River 

 

 

Notably, CPs can provide benefits beyond achieving the greatest biotic response, and so other 

watersheds (e.g., those with high amounts of agriculture) need not be excluded from future 

conservation efforts. For example, some CPs increase agricultural production and may still have 

important benefits for biota even if resulting biotic indices do not match reference conditions. An 

alternative process for prioritizing watersheds for CP implementation might follow the same 

steps described above except focus on locations where CP density is currently too low to 

enhance water quality or instream habitat. This approach could serve as an initial step toward 

reaching density thresholds that benefit instream conditions and biota (Figure 5.2, Table 5.2).  
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Figure 5.2. Landscape units where installing conservation practices could serve as an initial step 

toward reaching thresholds that benefit instream conditions and biota. See Table 5.2 for the 

coordinates of the landscape units. 

 

 

Table 5.2. Landscape units where greater density (number/hectare) of conservation practices 

(CPs) could serve as an initial step toward reaching density thresholds that benefit instream 

conditions and biota. Ag = percentage agricultural land use. 

Latitude Longitude Ag CP HUC-12 

36.64 -82.44 25 0 Abrams Creek-North Fork Holston River 

36.62 -82.52 25 0 Abrams Creek-North Fork Holston River 

36.65 -82.49 26 0 Abrams Creek-North Fork Holston River 

36.62 -82.51 28 0 Abrams Creek-North Fork Holston River 

36.65 -82.45 30 0 Abrams Creek-North Fork Holston River 

36.64 -82.53 30 0 Abrams Creek-North Fork Holston River 

36.64 -82.52 31 0 Abrams Creek-North Fork Holston River 

36.64 -82.42 34 0 Abrams Creek-North Fork Holston River 

36.66 -82.46 37 0 Abrams Creek-North Fork Holston River 

36.65 -82.45 38 0 Abrams Creek-North Fork Holston River 

36.63 -82.42 38 0 Abrams Creek-North Fork Holston River 

36.74 -82.04 41 0 Abrams Creek-North Fork Holston River 
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36.65 -82.39 43 0 Abrams Creek-North Fork Holston River 

36.65 -82.4 38 0.09 Abrams Creek-North Fork Holston River 

36.72 -82.11 25 0 Beaver Creek 

36.63 -82.17 26 0 Beaver Creek 

36.65 -82.12 29 0 Beaver Creek 

36.64 -82.18 29 0 Beaver Creek 

36.63 -82.2 29 0 Beaver Creek 

36.73 -82.1 30 0 Beaver Creek 

36.64 -82.09 32 0 Beaver Creek 

36.74 -82.07 34 0 Beaver Creek 

36.64 -82.12 37 0 Beaver Creek 

36.64 -82.12 37 0 Beaver Creek 

36.66 -82.21 38 0 Beaver Creek 

36.64 -82.15 38 0 Beaver Creek 

36.65 -82.22 39 0 Beaver Creek 

36.67 -82.18 45 0 Beaver Creek 

36.68 -82.13 47 0 Beaver Creek 

36.64 -82.18 25 0.003 Beaver Creek 

36.66 -82.13 37 0.019 Beaver Creek 

36.66 -82.1 27 0.023 Beaver Creek 

36.65 -82.15 50 0.036 Beaver Creek 

36.64 -82.2 49 0.044 Beaver Creek 

36.7 -82.06 50 0.053 Beaver Creek 

36.69 -82.13 31 0.056 Beaver Creek 

36.85 -82.11 26 0 Big Cedar Creek-Clinch River 

36.85 -82.1 28 0 Big Cedar Creek-Clinch River 

36.97 -82.04 33 0 Big Cedar Creek-Clinch River 

36.95 -82.02 33 0 Big Cedar Creek-Clinch River 

36.87 -82.07 33 0 Big Cedar Creek-Clinch River 

36.86 -82.13 33 0 Big Cedar Creek-Clinch River 

37.03 -81.98 34 0 Big Cedar Creek-Clinch River 

36.86 -82.11 35 0 Big Cedar Creek-Clinch River 

37.05 -82.02 36 0 Big Cedar Creek-Clinch River 

36.85 -82.11 36 0 Big Cedar Creek-Clinch River 

36.84 -82.13 36 0 Big Cedar Creek-Clinch River 

36.92 -82.03 38 0 Big Cedar Creek-Clinch River 

36.9 -82.01 41 0 Big Cedar Creek-Clinch River 

36.88 -82.04 44 0 Big Cedar Creek-Clinch River 

36.88 -82.03 45 0 Big Cedar Creek-Clinch River 

36.88 -82.03 46 0 Big Cedar Creek-Clinch River 

36.9 -82.02 49 0 Big Cedar Creek-Clinch River 

36.88 -82.01 32 0.003 Big Cedar Creek-Clinch River 

36.92 -82.01 43 0.004 Big Cedar Creek-Clinch River 

36.9 -82.04 39 0.017 Big Cedar Creek-Clinch River 

36.88 -82.13 45 0.017 Big Cedar Creek-Clinch River 
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36.92 -82.02 29 0.021 Big Cedar Creek-Clinch River 

36.91 -82.05 37 0.032 Big Cedar Creek-Clinch River 

36.89 -82.09 30 0.036 Big Cedar Creek-Clinch River 

36.95 -82.07 42 0.05 Big Cedar Creek-Clinch River 

36.96 -82.05 29 0.054 Big Cedar Creek-Clinch River 

36.94 -82.04 44 0.063 Big Cedar Creek-Clinch River 

36.93 -82.09 49 0.063 Big Cedar Creek-Clinch River 

36.64 -82.59 25 0 Big Moccasin Creek-North Fork Holston River 

36.62 -82.59 26 0 Big Moccasin Creek-North Fork Holston River 

36.58 -82.59 26 0 Big Moccasin Creek-North Fork Holston River 

36.61 -82.58 28 0 Big Moccasin Creek-North Fork Holston River 

36.69 -82.5 29 0 Big Moccasin Creek-North Fork Holston River 

36.6 -82.62 29 0 Big Moccasin Creek-North Fork Holston River 

36.61 -82.58 29 0 Big Moccasin Creek-North Fork Holston River 

36.59 -82.68 30 0 Big Moccasin Creek-North Fork Holston River 

36.59 -82.63 30 0 Big Moccasin Creek-North Fork Holston River 

36.6 -82.64 31 0 Big Moccasin Creek-North Fork Holston River 

36.71 -82.42 32 0 Big Moccasin Creek-North Fork Holston River 

36.63 -82.63 32 0 Big Moccasin Creek-North Fork Holston River 

36.64 -82.57 32 0 Big Moccasin Creek-North Fork Holston River 

36.72 -82.39 33 0 Big Moccasin Creek-North Fork Holston River 

36.6 -82.58 34 0 Big Moccasin Creek-North Fork Holston River 

36.57 -82.62 35 0 Big Moccasin Creek-North Fork Holston River 

36.57 -82.63 35 0 Big Moccasin Creek-North Fork Holston River 

36.67 -82.52 36 0 Big Moccasin Creek-North Fork Holston River 

36.61 -82.56 36 0 Big Moccasin Creek-North Fork Holston River 

36.59 -82.71 38 0 Big Moccasin Creek-North Fork Holston River 

36.57 -82.62 38 0 Big Moccasin Creek-North Fork Holston River 

36.69 -82.48 39 0 Big Moccasin Creek-North Fork Holston River 

36.6 -82.59 39 0 Big Moccasin Creek-North Fork Holston River 

36.57 -82.63 39 0 Big Moccasin Creek-North Fork Holston River 

36.62 -82.57 43 0 Big Moccasin Creek-North Fork Holston River 

36.65 -82.56 44 0 Big Moccasin Creek-North Fork Holston River 

36.61 -82.58 46 0 Big Moccasin Creek-North Fork Holston River 

36.58 -82.6 46 0 Big Moccasin Creek-North Fork Holston River 

36.58 -82.62 47 0 Big Moccasin Creek-North Fork Holston River 

36.59 -82.62 48 0 Big Moccasin Creek-North Fork Holston River 

36.58 -82.61 48 0 Big Moccasin Creek-North Fork Holston River 

36.74 -82.31 49 0 Big Moccasin Creek-North Fork Holston River 

36.73 -82.39 34 0.007 Big Moccasin Creek-North Fork Holston River 

36.58 -82.66 43 0.014 Big Moccasin Creek-North Fork Holston River 

36.6 -82.54 27 0.015 Big Moccasin Creek-North Fork Holston River 

36.71 -82.38 38 0.016 Big Moccasin Creek-North Fork Holston River 

36.6 -82.59 28 0.017 Big Moccasin Creek-North Fork Holston River 

36.65 -82.56 29 0.035 Big Moccasin Creek-North Fork Holston River 
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36.66 -82.54 28 0.044 Big Moccasin Creek-North Fork Holston River 

36.69 -82.46 44 0.061 Big Moccasin Creek-North Fork Holston River 

36.81 -82.37 25 0 Copper Creek 

36.8 -82.27 25 0 Copper Creek 

36.71 -82.51 26 0 Copper Creek 

36.74 -82.42 27 0 Copper Creek 

36.72 -82.57 27 0 Copper Creek 

36.74 -82.48 28 0 Copper Creek 

36.8 -82.27 29 0 Copper Creek 

36.72 -82.5 29 0 Copper Creek 

36.83 -82.19 30 0 Copper Creek 

36.69 -82.54 30 0 Copper Creek 

36.66 -82.64 31 0 Copper Creek 

36.66 -82.63 32 0 Copper Creek 

36.74 -82.32 33 0 Copper Creek 

36.74 -82.46 34 0 Copper Creek 

36.86 -82.2 39 0 Copper Creek 

36.69 -82.59 40 0 Copper Creek 

36.78 -82.26 41 0 Copper Creek 

36.68 -82.59 42 0 Copper Creek 

36.68 -82.56 43 0 Copper Creek 

36.76 -82.31 44 0 Copper Creek 

36.7 -82.54 44 0 Copper Creek 

36.77 -82.28 46 0 Copper Creek 

36.75 -82.38 47 0 Copper Creek 

36.67 -82.68 50 0 Copper Creek 

36.8 -82.32 50 0.004 Copper Creek 

36.66 -82.71 32 0.005 Copper Creek 

36.84 -82.24 45 0.009 Copper Creek 

36.75 -82.33 28 0.01 Copper Creek 

36.74 -82.53 44 0.024 Copper Creek 

36.86 -82.18 31 0.027 Copper Creek 

36.81 -82.25 31 0.028 Copper Creek 

36.83 -82.23 43 0.036 Copper Creek 

36.72 -82.48 35 0.037 Copper Creek 

36.79 -82.36 46 0.037 Copper Creek 

36.8 -82.31 47 0.049 Copper Creek 

36.77 -82.33 35 0.061 Copper Creek 

36.7 -82.6 32 0.07 Copper Creek 

36.8 -82.35 45 0.082 Copper Creek 

36.85 -82.21 41 0.085 Copper Creek 

36.77 -82.5 31 0.088 Copper Creek 

36.85 -82.23 36 0.09 Copper Creek 

36.73 -82.45 33 0.098 Copper Creek 

37.04 -82.1 25 0 Dumps Creek-Clinch River 
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36.94 -82.16 25 0 Dumps Creek-Clinch River 

36.86 -82.34 25 0 Dumps Creek-Clinch River 

36.91 -82.23 25 0 Dumps Creek-Clinch River 

36.97 -82.12 26 0 Dumps Creek-Clinch River 

36.91 -82.22 26 0 Dumps Creek-Clinch River 

36.84 -82.32 27 0 Dumps Creek-Clinch River 

36.92 -82.17 28 0 Dumps Creek-Clinch River 

36.99 -82.06 29 0 Dumps Creek-Clinch River 

37.03 -82.03 30 0 Dumps Creek-Clinch River 

37.01 -82.05 30 0 Dumps Creek-Clinch River 

36.99 -82.06 30 0 Dumps Creek-Clinch River 

36.99 -82.05 30 0 Dumps Creek-Clinch River 

36.98 -81.97 30 0 Dumps Creek-Clinch River 

36.97 -82 30 0 Dumps Creek-Clinch River 

36.96 -82.09 30 0 Dumps Creek-Clinch River 

36.91 -82.3 32 0 Dumps Creek-Clinch River 

37 -82.09 34 0 Dumps Creek-Clinch River 

36.91 -82.24 34 0 Dumps Creek-Clinch River 

37.02 -82 36 0 Dumps Creek-Clinch River 

36.97 -82.02 36 0 Dumps Creek-Clinch River 

36.93 -82.15 38 0 Dumps Creek-Clinch River 

36.97 -82.14 40 0 Dumps Creek-Clinch River 

36.88 -82.26 40 0 Dumps Creek-Clinch River 

36.99 -82.05 41 0 Dumps Creek-Clinch River 

36.98 -82.13 41 0 Dumps Creek-Clinch River 

36.89 -82.28 41 0 Dumps Creek-Clinch River 

36.92 -82.24 44 0 Dumps Creek-Clinch River 

36.99 -82.11 45 0 Dumps Creek-Clinch River 

36.89 -82.29 45 0 Dumps Creek-Clinch River 

37 -82.09 47 0 Dumps Creek-Clinch River 

36.89 -82.28 47 0 Dumps Creek-Clinch River 

36.87 -82.27 49 0 Dumps Creek-Clinch River 

36.91 -82.23 49 0 Dumps Creek-Clinch River 

37.03 -82.03 50 0 Dumps Creek-Clinch River 

37.02 -82.01 50 0 Dumps Creek-Clinch River 

36.88 -82.29 50 0 Dumps Creek-Clinch River 

36.9 -82.25 36 0.001 Dumps Creek-Clinch River 

36.88 -82.24 36 0.004 Dumps Creek-Clinch River 

36.89 -82.31 31 0.011 Dumps Creek-Clinch River 

36.89 -82.25 46 0.016 Dumps Creek-Clinch River 

37.02 -82.04 35 0.018 Dumps Creek-Clinch River 

36.85 -82.35 47 0.019 Dumps Creek-Clinch River 

37 -82.01 40 0.02 Dumps Creek-Clinch River 

37.03 -82 43 0.022 Dumps Creek-Clinch River 

36.86 -82.29 30 0.023 Dumps Creek-Clinch River 
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37.01 -82.07 29 0.027 Dumps Creek-Clinch River 

36.89 -82.2 27 0.028 Dumps Creek-Clinch River 

36.89 -82.17 32 0.028 Dumps Creek-Clinch River 

36.93 -82.24 37 0.037 Dumps Creek-Clinch River 

36.9 -82.26 41 0.041 Dumps Creek-Clinch River 

36.93 -82.15 30 0.047 Dumps Creek-Clinch River 

36.92 -82.17 25 0.052 Dumps Creek-Clinch River 

36.88 -82.35 36 0.052 Dumps Creek-Clinch River 

36.83 -82.29 46 0.067 Dumps Creek-Clinch River 

36.96 -82.13 35 0.07 Dumps Creek-Clinch River 

36.86 -82.32 33 0.078 Dumps Creek-Clinch River 

36.94 -82.12 35 0.082 Dumps Creek-Clinch River 

36.96 -82.09 31 0.083 Dumps Creek-Clinch River 

36.96 -82.55 25 0 Guest River 

36.97 -82.47 26 0 Guest River 

36.93 -82.5 27 0 Guest River 

36.92 -82.43 35 0 Guest River 

36.93 -82.53 25 0.07 Guest River 

36.98 -81.5 26 0 Laurel Creek-North Fork Holston River 

36.93 -81.56 26 0 Laurel Creek-North Fork Holston River 

36.93 -81.65 29 0 Laurel Creek-North Fork Holston River 

36.97 -81.51 31 0 Laurel Creek-North Fork Holston River 

36.95 -81.49 31 0 Laurel Creek-North Fork Holston River 

36.95 -81.59 34 0 Laurel Creek-North Fork Holston River 

36.95 -81.49 49 0 Laurel Creek-North Fork Holston River 

36.93 -81.5 34 0.029 Laurel Creek-North Fork Holston River 

36.96 -81.5 30 0.03 Laurel Creek-North Fork Holston River 

36.92 -81.54 31 0.045 Laurel Creek-North Fork Holston River 

36.92 -81.62 33 0.047 Laurel Creek-North Fork Holston River 

36.9 -81.58 41 0.07 Laurel Creek-North Fork Holston River 

36.93 -81.52 25 0.085 Laurel Creek-North Fork Holston River 

36.9 -81.64 47 0.095 Laurel Creek-North Fork Holston River 

36.62 -81.66 26 0 Laurel Creek-South Fork Holston River 

36.54 -81.9 26 0 Laurel Creek-South Fork Holston River 

36.67 -81.64 27 0 Laurel Creek-South Fork Holston River 

36.62 -81.64 27 0 Laurel Creek-South Fork Holston River 

36.65 -81.83 27 0 Laurel Creek-South Fork Holston River 

36.5 -81.94 27 0 Laurel Creek-South Fork Holston River 

36.63 -81.65 28 0 Laurel Creek-South Fork Holston River 

36.66 -81.76 29 0 Laurel Creek-South Fork Holston River 

36.49 -81.94 30 0 Laurel Creek-South Fork Holston River 

36.64 -81.79 32 0 Laurel Creek-South Fork Holston River 

36.72 -81.65 37 0 Laurel Creek-South Fork Holston River 

36.61 -81.71 38 0 Laurel Creek-South Fork Holston River 

36.66 -81.83 45 0 Laurel Creek-South Fork Holston River 
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36.63 -81.84 46 0 Laurel Creek-South Fork Holston River 

36.53 -81.93 33 0.021 Laurel Creek-South Fork Holston River 

36.55 -81.9 26 0.033 Laurel Creek-South Fork Holston River 

36.51 -81.92 40 0.048 Laurel Creek-South Fork Holston River 

36.8 -81.62 25 0 Middle Fork Holston River 

36.81 -81.67 27 0 Middle Fork Holston River 

36.79 -81.69 30 0 Middle Fork Holston River 

36.78 -81.57 30 0 Middle Fork Holston River 

36.85 -81.51 32 0 Middle Fork Holston River 

36.81 -81.64 32 0 Middle Fork Holston River 

36.83 -81.6 33 0 Middle Fork Holston River 

36.85 -81.69 34 0 Middle Fork Holston River 

36.78 -81.47 34 0 Middle Fork Holston River 

36.82 -81.56 34 0 Middle Fork Holston River 

36.81 -81.61 34 0 Middle Fork Holston River 

36.88 -81.45 36 0 Middle Fork Holston River 

36.81 -81.68 36 0 Middle Fork Holston River 

36.79 -81.67 36 0 Middle Fork Holston River 

36.84 -81.53 37 0 Middle Fork Holston River 

36.8 -81.68 38 0 Middle Fork Holston River 

36.85 -81.54 39 0 Middle Fork Holston River 

36.84 -81.49 39 0 Middle Fork Holston River 

36.81 -81.56 42 0 Middle Fork Holston River 

36.83 -81.45 43 0 Middle Fork Holston River 

36.8 -81.61 43 0 Middle Fork Holston River 

36.82 -81.66 44 0 Middle Fork Holston River 

36.8 -81.68 46 0 Middle Fork Holston River 

36.86 -81.47 50 0 Middle Fork Holston River 

36.83 -81.56 50 0 Middle Fork Holston River 

36.85 -81.43 31 0.006 Middle Fork Holston River 

36.84 -81.7 40 0.011 Middle Fork Holston River 

36.84 -81.48 42 0.014 Middle Fork Holston River 

36.83 -81.66 35 0.018 Middle Fork Holston River 

36.86 -81.45 29 0.024 Middle Fork Holston River 

36.85 -81.46 38 0.03 Middle Fork Holston River 

36.86 -81.48 48 0.031 Middle Fork Holston River 

36.86 -81.49 27 0.038 Middle Fork Holston River 

36.86 -81.45 42 0.074 Middle Fork Holston River 

36.88 -81.47 41 0.078 Middle Fork Holston River 

36.86 -81.49 29 0.082 Middle Fork Holston River 

36.83 -81.64 41 0.082 Middle Fork Holston River 

36.83 -81.64 46 0.082 Middle Fork Holston River 

36.81 -81.57 49 0.087 Middle Fork Holston River 

36.85 -81.46 43 0.095 Middle Fork Holston River 

36.61 -82.87 27 0 North Fork Clinch River-Clinch River 
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36.59 -83 27 0 North Fork Clinch River-Clinch River 

36.55 -83.08 29 0 North Fork Clinch River-Clinch River 

36.6 -82.89 31 0 North Fork Clinch River-Clinch River 

36.54 -83.1 37 0 North Fork Clinch River-Clinch River 

36.68 -82.88 38 0 North Fork Clinch River-Clinch River 

36.63 -82.9 39 0 North Fork Clinch River-Clinch River 

36.65 -82.75 40 0 North Fork Clinch River-Clinch River 

36.55 -83.1 40 0 North Fork Clinch River-Clinch River 

36.66 -82.89 43 0 North Fork Clinch River-Clinch River 

36.64 -82.88 47 0 North Fork Clinch River-Clinch River 

36.59 -83.01 48 0 North Fork Clinch River-Clinch River 

36.58 -83.02 49 0 North Fork Clinch River-Clinch River 

36.58 -83.03 50 0 North Fork Clinch River-Clinch River 

36.63 -82.76 44 0.022 North Fork Clinch River-Clinch River 

36.6 -82.97 25 0.062 North Fork Clinch River-Clinch River 

36.58 -83.03 37 0.069 North Fork Clinch River-Clinch River 

36.62 -82.79 27 0.089 North Fork Clinch River-Clinch River 

36.65 -81.81 37 0 Rowland Creek-South Fork Holston River 

36.85 -82.72 29 0 South Fork Powell River-Powell River 

36.83 -82.5 25 0 Stony Creek-Clinch River 

36.81 -82.49 25 0 Stony Creek-Clinch River 

36.68 -82.72 25 0 Stony Creek-Clinch River 

36.75 -82.6 30 0 Stony Creek-Clinch River 

36.7 -82.69 32 0 Stony Creek-Clinch River 

36.83 -82.46 34 0 Stony Creek-Clinch River 

36.74 -82.61 35 0 Stony Creek-Clinch River 

36.7 -82.66 36 0 Stony Creek-Clinch River 

36.81 -82.53 37 0 Stony Creek-Clinch River 

36.82 -82.54 41 0 Stony Creek-Clinch River 

36.82 -82.47 42 0 Stony Creek-Clinch River 

36.72 -82.68 42 0 Stony Creek-Clinch River 

36.69 -82.69 42 0 Stony Creek-Clinch River 

36.81 -82.49 44 0 Stony Creek-Clinch River 

36.78 -82.55 44 0 Stony Creek-Clinch River 

36.83 -82.44 48 0 Stony Creek-Clinch River 

36.81 -82.5 48 0 Stony Creek-Clinch River 

36.76 -82.61 49 0 Stony Creek-Clinch River 

36.79 -82.53 37 0.021 Stony Creek-Clinch River 

36.71 -82.69 41 0.024 Stony Creek-Clinch River 

36.79 -82.55 33 0.038 Stony Creek-Clinch River 

36.73 -82.68 36 0.039 Stony Creek-Clinch River 

36.76 -82.57 44 0.053 Stony Creek-Clinch River 

36.76 -82.59 35 0.061 Stony Creek-Clinch River 

36.8 -82.51 39 0.061 Stony Creek-Clinch River 

36.82 -82.44 33 0.071 Stony Creek-Clinch River 
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36.76 -82.63 39 0.079 Stony Creek-Clinch River 

36.7 -82.73 45 0.079 Stony Creek-Clinch River 

37.11 -81.58 25 0 Swords Creek-Clinch River 

37.02 -81.96 25 0 Swords Creek-Clinch River 

37.17 -81.52 26 0 Swords Creek-Clinch River 

37.09 -81.82 26 0 Swords Creek-Clinch River 

37.07 -81.86 27 0 Swords Creek-Clinch River 

37.02 -81.87 27 0 Swords Creek-Clinch River 

37.03 -81.91 29 0 Swords Creek-Clinch River 

37.14 -81.52 30 0 Swords Creek-Clinch River 

37.06 -81.91 30 0 Swords Creek-Clinch River 

37.13 -81.5 32 0 Swords Creek-Clinch River 

37.13 -81.49 32 0 Swords Creek-Clinch River 

37.12 -81.6 32 0 Swords Creek-Clinch River 

37.17 -81.79 32 0 Swords Creek-Clinch River 

37 -81.93 32 0 Swords Creek-Clinch River 

37.17 -81.54 33 0 Swords Creek-Clinch River 

37.14 -81.47 33 0 Swords Creek-Clinch River 

37.13 -81.55 33 0 Swords Creek-Clinch River 

37.12 -81.55 35 0 Swords Creek-Clinch River 

37.08 -81.61 36 0 Swords Creek-Clinch River 

37.09 -81.86 36 0 Swords Creek-Clinch River 

37.14 -81.48 37 0 Swords Creek-Clinch River 

37.1 -81.54 37 0 Swords Creek-Clinch River 

37.17 -81.47 38 0 Swords Creek-Clinch River 

37.07 -81.85 39 0 Swords Creek-Clinch River 

37.16 -81.48 41 0 Swords Creek-Clinch River 

37.09 -81.83 41 0 Swords Creek-Clinch River 

37.12 -81.49 42 0 Swords Creek-Clinch River 

37.01 -81.9 43 0 Swords Creek-Clinch River 

37.07 -81.49 44 0 Swords Creek-Clinch River 

37.05 -81.81 44 0 Swords Creek-Clinch River 

37.06 -81.59 46 0 Swords Creek-Clinch River 

37.16 -81.47 47 0 Swords Creek-Clinch River 

37.19 -81.45 48 0 Swords Creek-Clinch River 

37.15 -81.54 48 0 Swords Creek-Clinch River 

37.15 -81.48 50 0 Swords Creek-Clinch River 

37.08 -81.85 50 0 Swords Creek-Clinch River 

37.03 -81.85 25 0.008 Swords Creek-Clinch River 

37.15 -81.49 42 0.009 Swords Creek-Clinch River 

37.13 -81.51 34 0.012 Swords Creek-Clinch River 

37.17 -81.45 39 0.014 Swords Creek-Clinch River 

37.06 -81.88 34 0.026 Swords Creek-Clinch River 

37.16 -81.5 32 0.035 Swords Creek-Clinch River 

37.12 -81.44 25 0.038 Swords Creek-Clinch River 
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37.09 -81.55 35 0.039 Swords Creek-Clinch River 

37.13 -81.56 47 0.041 Swords Creek-Clinch River 

37.13 -81.56 39 0.048 Swords Creek-Clinch River 

37.09 -81.55 50 0.056 Swords Creek-Clinch River 

37.19 -81.47 40 0.064 Swords Creek-Clinch River 

37.17 -81.44 26 0.083 Swords Creek-Clinch River 

37.09 -81.58 50 0.096 Swords Creek-Clinch River 

37.14 -81.44 36 0.099 Swords Creek-Clinch River 

36.9 -81.77 27 0 Tumbling Creek-North Fork Holston River 

36.93 -81.68 28 0 Tumbling Creek-North Fork Holston River 

36.86 -81.75 29 0 Tumbling Creek-North Fork Holston River 

36.88 -81.7 32 0 Tumbling Creek-North Fork Holston River 

36.9 -81.72 34 0 Tumbling Creek-North Fork Holston River 

36.92 -81.75 35 0 Tumbling Creek-North Fork Holston River 

36.91 -81.72 38 0 Tumbling Creek-North Fork Holston River 

36.89 -81.78 38 0 Tumbling Creek-North Fork Holston River 

36.91 -81.74 39 0 Tumbling Creek-North Fork Holston River 

36.92 -81.73 41 0 Tumbling Creek-North Fork Holston River 

36.85 -81.73 41 0 Tumbling Creek-North Fork Holston River 

36.91 -81.74 43 0 Tumbling Creek-North Fork Holston River 

36.91 -81.75 44 0 Tumbling Creek-North Fork Holston River 

36.89 -81.77 44 0 Tumbling Creek-North Fork Holston River 

36.89 -81.72 36 0.02 Tumbling Creek-North Fork Holston River 

36.88 -81.66 37 0.028 Tumbling Creek-North Fork Holston River 

36.9 -81.75 26 0.037 Tumbling Creek-North Fork Holston River 

36.88 -81.74 36 0.045 Tumbling Creek-North Fork Holston River 

36.65 -83.25 25 0 Wallen Creek-Powell River 

36.63 -83.17 27 0 Wallen Creek-Powell River 

36.65 -83.22 27 0 Wallen Creek-Powell River 

36.63 -83.29 27 0 Wallen Creek-Powell River 

36.59 -83.32 29 0 Wallen Creek-Powell River 

36.63 -83.17 30 0 Wallen Creek-Powell River 

36.59 -83.33 35 0 Wallen Creek-Powell River 

36.61 -83.33 40 0 Wallen Creek-Powell River 

36.6 -83.35 40 0 Wallen Creek-Powell River 

36.62 -83.2 41 0 Wallen Creek-Powell River 

36.58 -83.33 45 0 Wallen Creek-Powell River 

36.62 -83.25 47 0 Wallen Creek-Powell River 

36.61 -83.27 47 0 Wallen Creek-Powell River 

36.67 -83.14 48 0 Wallen Creek-Powell River 

36.65 -83.23 50 0 Wallen Creek-Powell River 

36.61 -83.3 29 0.008 Wallen Creek-Powell River 

36.63 -83.26 49 0.017 Wallen Creek-Powell River 

36.69 -83.14 25 0.036 Wallen Creek-Powell River 

36.62 -83.2 29 0.036 Wallen Creek-Powell River 
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36.59 -83.32 29 0.038 Wallen Creek-Powell River 

36.63 -83.24 35 0.039 Wallen Creek-Powell River 

36.61 -83.24 34 0.066 Wallen Creek-Powell River 

36.67 -83.17 27 0.073 Wallen Creek-Powell River 

36.64 -83.27 38 0.082 Wallen Creek-Powell River 

36.71 -83.22 35 0.087 Wallen Creek-Powell River 

36.7 -83.14 25 0.088 Wallen Creek-Powell River 

36.62 -83.26 26 0.089 Wallen Creek-Powell River 

36.6 -83.3 33 0.096 Wallen Creek-Powell River 
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